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Virtualization is the current hot solution for a variety of computing problems. However, the complexities it 
introduces create additional problems when trying to precisely plan capacity. Virtualization is really the 
application of techniques to increase parallelism, either actual or perceived, and has been used in many 
different ways for a very long time. This paper explores many of the techniques used to virtualize and par-
allelize resources, the impact of those techniques on capacity and the resulting changes in the perception 
of precision for both planning needs and measuring usage.   
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1. Introduction 
The key to understanding capacity planning has al-

ways been two-fold. First is the understanding of the de-
mand for resources. Second is the understanding of the 
available resources. Ever since the early days of computing 
there has been a push/pull relationship between demand 
(workloads consuming resources) and supply (resource ca-
pacity). Workloads grow and push the need for more capac-
ity. The complexity resulting from larger workloads 
increases the desire for planning precision to avoid the ex-
penses of over-provisioning. Capacity becomes less expen-
sive and pulls bigger workloads out of developers. 
Reduction of cost decreases the need for planning precision 
because over-provisioning is less costly than the effort re-
quired for greater precision. Moore’s Law, which states that 
the number of transistors on a single integrated circuit will 
double every 18 months, has been the enabler of capacity 
potential by providing consistently increasing capacity at 
consistently decreasing cost, but limitations in theoretical 
design and in practical manufacturing threaten to disrupt the 
consistency of the cost/value curve. (Tummala 2006) While 
advances in semiconductor technology have continued to 
allow manufactures to achieve the Moore’s Law transistor 
density, the design problems created by the extreme com-
plexity of using that many transistors have forced all of the 
major processor manufacturers to use more parallelism. The 
Electrical Engineering and Computer Sciences department 
at the University of California at Berkeley conducted a two 
year multiple university research project on this topic. The 
published results, The Landscape of Parallel Computing 
Research: A View from Berkeley, is a 56 page report with 
134 references that provides compelling insights into using 
parallelism and the direction of the latest processor designs. 
“This shift toward increasing parallelism is not a triumphant 
stride forward based on breakthroughs in novel software 
and architectures for parallelism; instead, this plunge into 
parallelism is actually a retreat from even greater challenges 
that thwart efficient silicon implementation of traditional 
uniprocessor architectures.” (Asanovic, et al. 2006, p. 5) 
The main focus of the Berkeley research was to understand 

all aspects of what they see as a change in the industry from 
uniprocessors to “multicore” processors to “manycore” 
processors, the idea being that it is both more efficient and 
more effective to use a very large number of simpler proc-
essors than try to design and build ever more complex scalar 
processors. For example, Intel has demonstrated a single 
chip with 80 processors (Greene 2007) and Cisco is ship-
ping a product with 188 processors (Asanovic, et al. 2006, 
p. 7). 

How does such a shift from scalar uniprocessors to in-
creasingly parallel environments affect the capacity plan-
ning process? It increases the demand for resources because 
of additional work that must be done for synchronization 
and communication. It decreases the capacity because some 
resources are not available, either because workloads do not 
parallelize well or because of actual dynamic capacity 
changes. This paper introduces the new term “hidden con-
sumers” for the former and the new term “hidden resources” 
for the latter. However, before looking at these capacity 
issues a discussion of the techniques to implement the shift 
is required. Section 2 discusses the Enhancing Techniques 
that are being used to increase parallelism, from virtualized 
instructions to virtualized systems. Section 3 discusses Ca-
pacity Inhibitors, which are beneficial aspects of the En-
hancing Techniques that either negatively impact actual 
capacity or mask it so that it cannot be measured.    

2. Enhancing Techniques 
The designers of computing systems and components 

have developed a number of parallelizing techniques to im-
prove overall system performance and capacity. While 
manufacturers have unique marketing terms for their im-
plementation of specific functionality these improvements 
fall into four general categories, introduced here as: Thread-
Internal, Core-Internal, Multi-Core And Multi-System. This 
section explains what these improvements are and Section 3 
shows how they complicate capacity analysis.  

The Berkeley study has taken an interesting approach 
by identifying 12 “Conventional Wisdoms” to illustrate how 
they see the changes to computing. (Asanovic, et al. 2006, 



The Myth of Precision Planning  CMG07 Session 556, December 6, 2007 

 2 

p. 5-6) While this study covers many different aspects of 
this extremely broad topic, including application design and 
new benchmark techniques, several of these conventional 
wisdoms are related directly to understanding the impact of 
the changes on planning capacity. CW#1 (“Conventional 
Wisdom” #1) is the “Power Wall” and is the change from 
thinking of power as free to power being expensive. This is 
the direct result of the massive increase in the number of 
transistors in processor chips. The improved manufacturing 
techniques that have allowed the increase have also reduced 
the cost of a single transistor to almost nothing. However, 
each transistor consumes power and a large number of them 
consume a lot of power. CW#7 is the “Memory Wall” and 
is the change from thinking of any complex function, like 
multiply or divide, as slower than simple memory access, 
like load or store. The speed of modern processors has in-
creased so much relative to the speed of memory, even L1 
cache, that the difference in processing cycles to execute 
these instructions is completely overwhelmed by the num-
ber of cycles lost waiting on memory. For example, a typi-
cal processor can do a multiply in four cycles and while a 
load only takes one cycle to execute it can take 200 cycles 
to access memory. CW#8 is the “ILP Wall” and states that 
there are diminishing performance returns for the added 
complexities associated with increased ILP (instruction 
level parallelism). CW#9 is the “Brick Wall” (the combina-
tion of the Power Wall + the Memory Wall + the ILP Wall) 
and states the while the doubling of uniprocessor perform-
ance had taken 18 months, it now takes over five years be-
cause of design complexities. CW#11 is the change from 
thinking of increased clock frequency as the primary 
method of improving performance to the new view that in-
creased parallelism as the primary method. CW#12 is the 
change from thinking that less than linear scaling is a failure 
to the realization that any cost effective implementation that 
improves application performance is a success.   

These Conventional Wisdoms illustrate the growing 
change toward increased parallelism and the use of virtual-
ization to leverage it. The focus of virtualization today is at 
the system level where multiple operating system images 
are run in parallel on a single hardware server. However, 
virtualization has been implemented at several different 
levels to achieve increased parallelism and thus improve 
application or system performance. We can look at these 
improvements in four broad categories: Thread-Internal, 
Core-Internal, Multi-Core and Multi-System.  
2.1 Thread-Internal 

Thread-Internal refers to functionality that increases 
the number of architectural instructions that can be com-
pleted for a programming thread of execution in a given 
amount of time. Including techniques referred to as ILP 
(instruction level parallelism), the techniques in this cate-
gory strive to complete more instructions per clock cycle. 
When the average number of instructions completed per 
clock cycle is greater than one, the processor is considered 
super-scalar. Most modern processors are implemented with 

micro-instruction designs to increase ILP. Architectural 
instructions are visible to programmers as opposed to mi-
cro-instructions which are used in the actual execution unit 
logic. David Patterson, one of the co-authors of the Berke-
ley study, is a co-author of an excellent text, Computer 
Architecture, A Quantitative Approach (Hennessy 2007), 
that provided most of the in-depth information for the 
following discussion of ILP techniques. Thread-Internal 
techniques provide a virtual architecture that hides the 
underlying transistor logic and the various ILP methodolo-
gies.  Some of the major Thread-Internal techniques are:  

• Pipelining: This is the technique where the execu-
tion of multiple architectural instructions is over-
lapped by implementing them in stages. Each 
stage, such as fetch, decode, execute, etc., uses a 
different section of the transistor logic in the proc-
essor. A stall is when an instruction cannot move 
to the next stage in the pipeline because it is wait-
ing on something, like a memory access or the re-
sults of another instruction. Vendors often measure 
processor performance in terms of the theoretical 
instructions per second or by using highly tuned 
benchmark applications. The effectiveness of pipe-
lining depends heavily on the skill of both the ap-
plication programmers and the compiler designers. 
Pipeline stalls mean fewer instructions executed 
which effectively reduces system capacity.  

• Out-of-Order Execution: This is the technique 
where one architectural instruction is executed be-
fore one that precedes it in the program but that has 
stalled. The effectiveness of out of order execution 
also depends heavily on the skill of both the appli-
cation programmers and the compiler designers but 
tends to improve performance by finding useful 
work when an instruction stalls.  

• Instruction and Data Cache: This is the tech-
nique where much faster (and therefore much more 
expensive) memory is implemented directly on the 
same chip as the processor (or closer to it than 
“main” memory). The combination of faster mem-
ory access plus reduced connectivity delays greatly 
reduces the time to fetch instructions or data from 
memory. The additional overhead for managing 
cache and finding instructions or data in the cache 
memory is usually significantly less than the appli-
cation performance improvement but poor applica-
tion or operating system design can overwhelm 
even multi-level cache designs. Cache generally 
increases the number of instructions executed in a 
given time because even the best pipelined and 
out-of-order execution designs eventually have to 
get more instructions and data from memory.   

• Branch Prediction: One of the problems with 
pipelined and out-of-order execution is the delay 
caused by a conditional branch in the program 
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thread of execution. Until the result of the condi-
tion is known, the processor does not know which 
instructions can be selected for execution. Many 
processor designs use sophisticated techniques to 
predict which path the branch will take and thus be 
able to do productive work instead of stalling until 
the conditional computation is finished. If the pre-
diction was wrong, then that work is thrown away 
and instructions in the correct path are fetched and 
executed. The overhead for branch prediction is 
generally low so it usually improves performance 
but a programmer or compiler designer that does 
not understand the prediction assumptions used by 
the processor can significantly impact performance 
with poorly designed software. 

• Speculative Execution: This is the technique 
where both branch paths are executed until the 
branch condition is known, at which time the re-
sults of instructions from the incorrect path are dis-
carded. Speculative execution adds considerable 
complexity to the processor design but usually im-
proves performance. Because it is not as sensitive 
to program design, it usually increases the overall 
capacity of the processor unless the rate at which 
the program branches exceeds the number of 
speculative execution paths in the processor de-
sign, at which point the pipeline will stall.  

• Vector Processing: This is the technique where a 
single instruction acts on multiple data elements at 
one time. Vector processing is referred to as SIMD 
(single instruction, multiple data) using Flynn’s 
Taxonomy for parallel architectures. (Hennessy 
2007, p. 197) This can greatly improve perform-
ance but it is generally limited to specific work-
loads, like image processing and graphic display. 
Performance improvements are often overstated 
based on specific performance tests so the impact 
on capacity is very workload dependent.  

2.2 Core-Internal 
Core-Internal refers to functionality that increases the 

number of architectural instructions that can be completed 
by a processor core in a given amount of time. Core-Internal 
techniques provide a virtual processor architecture that 
hides underlying implementations used to reduce cost and 
power usage.  

• Alternate Pipeline: This is the technique were the 
execution of multiple architectural instructions is 
overlapped by implementing additional execution 
unit logic or entire pipelines for common architec-
tural instructions. For example, if a processor im-
plemented a second ALU (arithmetic unit) then 
two ‘add’ instructions could execute at the same 
time. The Intel Pentium processor implemented a 
second pipeline, called the V-pipe, which allows 
two integer instructions in the same execution 

stream to execute at the same time under the right 
conditions. (Abrash 2001) This approach reduces 
the numbers of stalls caused by not having an exe-
cution unit available for an instruction but it sel-
dom performs even close to the “two instructions 
at once” expectations of the marketing department. 
Because the additional execution resources are 
specific to selective instructions, the performance 
improvement is highly dependent on the mix of in-
structions in the program. Few processors provide 
measurement information to show how these addi-
tional resources are being used. Even when the 
processor does provide a way to get these meas-
urements, very few of the performance reporting 
utilities collect them because of the lack of stan-
dardization across processors, even from the same 
vendor.    

• Hyperthreading: This is also a technique where 
the execution of multiple architectural instructions 
is overlapped by implementing additional execu-
tion unit logic. The difference from pipelining is 
that with hyperthreading the instructions can be se-
lected from different threads of execution to avoid 
stalls from lack of enough of the right type of in-
structions in a single program or stalls from trying 
to access common memory locations. The most se-
rious capacity problem with hyperthreading is how 
the additional resources are made available. The 
implementation of an alternative pipeline is rela-
tively transparent to programs, including the oper-
ating system, because all of the instructions are 
selected from a single thread of execution. Hyper-
threading selects instructions from different 
threads, which means the operating system must 
have some way to select which threads the instruc-
tions can come from. This is generally done by 
presenting the additional resources as another 
processor to the operating system (referred to as 
two complete “architectural states”) that effectively 
allows switching between two threads of execution 
without operating system context switch overhead. 
The problem with this approach is that the very na-
ture of hyperthreading is that there is common 
transistor logic between these two ‘virtual’ proces-
sors that acts as a bottleneck preventing 100% 
utilization of both at the same time. Therefore, 
from a capacity standpoint, a hyperthreaded proc-
essor will always appear to have capacity that is 
not being used. Unfortunately, neither the proces-
sors nor the performance utilities provide informa-
tion as to extent of the bottleneck or when the 
processor is truly saturated. In addition to being 
dependent on the mix of instructions within each 
thread of execution, hyperthreading performance is 
also dependent on how well the operating system 
selects threads to interleave. Because the operating 
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system sees the hyperthreading resources as a sec-
ond, and equal, processor it seldom, if ever, makes 
the correct selection.  

2.3 Multi-Core 
Multi-Core refers to functionality that increases the 

number of architectural instructions that can be completed 
by the total number of processors in the system in a given 
amount of time. Multi-Core techniques provide a virtual 
system architecture that hides specific characteristics of the 
underlying processor chip and memory implementations.   

• Dual/Quad Core: This is the technique where 
multiple processors are fabricated on a single chip. 
Multi-core chips virtualize the use of some chip 
transistor logic to improve parallelism such that the 
performance increase is greater than the increase in 
manufacturing costs or power usage. One of the 
advantages of this technique is that interprocessor 
communication and shared cache access are much 
faster because they are direct between the compo-
nents and avoid use of the slower system bus. How 
well the operating system places processes that 
communicate or share memory on processors in the 
same core can make a significant difference in per-
formance.  

• NUMA: NUMA (Non-Uniform Memory Access) 
is the technique where each section of main mem-
ory is physically packaged with a group of the 
processors in the system (usually one to four proc-
essors). This causes different memory access times 
depending on the location referenced. Most 
NUMA systems use large and complex cache 
memory with complex cache coherence techniques 
to reduce the average memory access time but 
there is still a significant penalty for a cache miss 
to a memory location in a different processor 
group. (Hennessy 2007, p. 202-224) NUMA sys-
tems virtualize the underlying memory architecture 
to reduce the communications costs that increase 
when scaling systems with a large number of proc-
essors. Application performance will vary depend-
ing on application design (memory sharing and 
communication between components) and cache 
management (which mitigates the remote access 
penalty). Some operating systems have very so-
phisticated process placement algorithms to detect 
memory sharing and/or communication between 
processes and move them to a common processor 
group. Many new Multi-Core processor designs 
use NUMA techniques in systems with multiple 
processor chips.  

• Symmetric Multi-Processor: SMP is the tech-
nique where a system is implemented with multiple 
equal processors (i.e., interchangeable from the 
perspective of the programmer) that have equal ac-
cess to main memory (also called UMA or Uni-

form Memory Access). SMP systems virtualize the 
processor/memory environment to reduce applica-
tion complexity and development costs. Specific 
application designs to maximize the parallel use of 
multiple processors require additional support, 
such as High Performance FORTRAN, to expose 
the underlying architecture. Interprocessor com-
munication, also known as the MP effect (multi-
processor effect), reduces the incremental capacity 
when another processor is added to the system (the 
overall capacity increase to the system is less than 
the capacity of the uni-processor added). The ex-
tent of the MP effect depends on the nature of the 
interprocessor communication and can be so severe 
that adding more processors actually reduces over-
all system capacity. (Gunther 1996) In addition, 
how the operating system supports the additional 
processors is critical to overall capacity and 
performance. For example, the Microsoft Windows 
95 operating system was designed for use on single 
processor systems so any additional processors are 
simply ignored. Even if both the hardware and the 
operating system fully support multiple processors, 
an application not designed to use them will not 
perform better as processors are added to the sys-
tem. In fact, because of the MP effect, application 
performance usually decreases.  

• Asymmetric Multi-Processor: AMP is the tech-
nique where a system is implemented with multiple 
processors that are not equal (i.e., interchangeable 
from the perspective of the programmer). The de-
gree of asymmetry can be anywhere from minor 
functional differences to totally different instruc-
tion architectures. Access to main memory can be 
either uniform or non-uniform, depending on how 
the different processor types are implemented. 
Generally one type of process is seen by the 
operating system and/or application programs as 
the “primary” architecture and the other types are 
used to off-load functionality. AMP systems 
virtualize the specific functions supported by the 
unique processors. Use of asymmetric or off-load 
processors significantly complicates operating 
system and application design but can significantly 
improve performance. Unfortunately, measurement 
of the use of these processors is extremely difficult 
which makes quantifying improvement also ex-
tremely difficult.  

2.4 Multi-System 
Multi-System refers to functionality that increases the 

total amount of work that can be completed by an applica-
tion (or set of applications) in a given amount of time. The 
systems can be symmetric or asymmetric and there is no 
requirement for homogeneity in the environment. Each sys-
tem generally implements one or more service functions 
based on standard protocols. Multi-System techniques pro-
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vide a virtual system architecture that hides specific charac-
teristics of the underlying system and communication im-
plementations.  

• Clusters: This is the technique where multiple in-
dependent operating systems jointly provide the 
supported services through operating system im-
plemented communication and synchronization. 
Clusters can be limited to load sharing or to fail-
over or they can provide both. Application com-
plexity varies, depending on the requirement for 
maintaining a global state across all of the applica-
tion components. Communication between systems 
increases as the amount of information that must be 
synchronized increases, which reduces overall ca-
pacity and increases application complexity. Even 
when each component of the application on each 
independent system is able to function autono-
mously there is still the problem of distributing 
work to the systems. There are many techniques to 
accomplish the distribution of work, including ad-
ditional load balancer systems in front of the clus-
ter that simply redirect work to application systems 
based on some predefined criteria. How well they 
achieve true balance has a profound effect on the 
overall capacity of the environment. Poor balance 
means that additional capacity will not be fully 
utilized so the overall capacity requirement must 
be increased to compensate for the imbalance.  

• Distributed Applications: This is the technique 
where multiple independent systems jointly pro-
vide the supported services. This is similar to Clus-
ters above but communication is implemented 
completely in the application instead of in the op-
erating system. Actual implementations are often a 
combination of true cluster and distributed applica-
tion designs. Where clusters are almost always im-
plemented with multiple identical or very similar 
systems, distributed applications can be imple-
mented with systems using quite different architec-
tures. 

• Distributed Operating Systems: This is the tech-
nique where a single operating system image is de-
ployed across multiple physical systems.  
Distributed operating systems virtualize the under-
lying implementation to present a single uni-
processor view to applications, thus masking them 
from changes in the underlying environment. There 
are many approaches to distributed operating sys-
tems with vastly different designs, each trying to 
compensate for problems, such as communication 
between the systems, load balancing, process 
placement or memory access. Capacity planning 
for distributed operating systems is extremely dif-
ficult and immature. Fortunately, the complexities 
of implementing distributed operating systems 
have limited their use to very specialized cases, 

mostly in academic research, so lack of planning 
methodology has not been a major issue. However, 
many distributed operating systems concepts have 
been incorporated into database systems, clusters, 
and distributed application designs so the problems 
related to these complexities are starting to be seen 
in commercial environments.    

• Grids and Networks-of-Workstations: This is 
the technique where multiple workstations are used 
for large computational problems. A Network-of-
Workstations (NOW) temporarily uses systems 
that are idle during non-prime times. A Grid is 
usually deployed with dedicated systems. Both 
provide a virtual supercomputer at a significantly 
reduced cost either by using existing, but idle, re-
sources (NOW) or by using significantly lower 
cost hardware (Grid). The most notable use of this 
approach is the SETI@Home project where indi-
viduals install a special screen saver that commu-
nicates with the project servers to do computations 
for the Search for Extraterrestrial Intelligence 
(SETI, see  http://setiathome.berkeley.edu/). There 
are significant issues when processing capacity of 
workstations is appropriated, either during off 
hours or when the workstation is idle. Issues in-
clude the way additional work is scheduled, proc-
ess placement (and if redeployment of an already 
placed process is allowed and when and how it can 
be moved), and communication requirements. Ca-
pacity planning is significantly more complex be-
cause it must include not only the plan for the 
virtual supercomputer that is composed of a very 
dynamic group of workstations but also the impact 
on performance when the owner of the workstation 
wants to use it. (Menascé 1996) 

3. Capacity Inhibitors 
Capacity inhibitors are anything that keeps an applica-

tion from using the full capacity potential of a resource. 
Inhibitors usually result from solving a significant problem 
which makes avoiding the inhibitors extremely difficult 
because the original problem has an even greater impact. 
The outcome of all of the capacity inhibitors is that planning 
precision is reduced by the introduction of uncertainty or 
variability.     
3.1 Processor Throttling 

To address the “Power Wall” many processors have 
implemented some form of throttling to reduce power con-
sumption. This can be done either by the operating system 
when it enters an idle state (when no processes are ready to 
be dispatched, or run, on a processor) or by the ACPI (Ad-
vanced Configuration and Power Interface, see 
http://www.acpi.info/) support chips, or by both. The proc-
essor clock speed can be reduced or the processor can be 
halted or placed in some form of reduced power state.  
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For example, the power state of the Intel Duo Core 
processors can be controlled independently by the operating 
system or the ACPI mechanisms and placed into a number 
of different states (halt, stop clock, deep sleep, etc.). 
(Gochman 2006, p. 93) The critical issue is how the operat-
ing system and/or performance measurement software ac-
count for processor usage in these situations. If overall 
processing time is not accumulated for a processor when its 
clock is stopped then it will appear that the capacity of the 
system has been reduced by a processor for that measure-
ment interval. However, if time is accumulated then the 
processing time for a process using that processor could be 
overstated by the amount of time the processor was stopped. 
If the processor clock speed is reduced at lower system utili-
zations then the capacity usage of an application can be 
overstated and the response time elongated. The exact crite-
ria used to initiate these changes are usually not exposed in 
performance measurements.   

The impact of this inhibitor on capacity planning is 
that measurements of both system capacity and application 
usage of that capacity become dependent on system load. 
As the system gets busier its capacity increases and the ap-
plication gets work done faster, so using a traditional 
utilization threshold may trigger a premature capacity 
increase.  3.2 Accuracy of Measurements 

Any capacity analysis relies on measurements of re-
sources, both usage and potential. Virtualization at any level 
tends to generalize theses measurements because the point 
of the virtualization is to abstract the underlying resources. 
Problems arise when the entity collecting the measurements, 
be it the operating system, an application or a performance 
measurement utility, doesn’t understand that the measure-
ments are of the generalized resource instead of the underly-
ing actual resource. A measurement technique must make 
assumptions about what is being measured in order to create 
a practical implementation, but these assumptions can cause 
significant problems when the resources are virtualized. For 
example, many operating systems measure the time a proc-
ess uses the processor by recording the time from the sys-
tem clock when the process is dispatched and again when 
the state of the process is saved so another can be dis-
patched. The difference between the two times is how long 
the process ran for that dispatch event and the accumulation 
of those differences over the life of the process is the total 
time it used the processor. This is a perfectly reasonable 
approach because the operating system has total control 
over which processes run on which processors. A process 
cannot start or stop running without operation system in-
volvement. When the operating system is running as a guest 
in a virtualized environment then this measurement depends 
on how the system clocks are virtualized. If the guest oper-
ating system uses the actual system clock then any time that 
a different guest operating system was running will be ac-
counted to whatever process was running (or processes in a 
multiple processor system). The guest operating system is 
unaware of the fact that it lost the use of the physical proc-

essors for a while and greatly overstates the amount of time 
some processes used the processor. If the guest operating 
system uses a virtualized system clock, then how it is virtu-
alized becomes a significant issue. Many operating systems 
update the system clock using a timer interrupt but virtual-
ization can cause the interrupts to be delayed. When this 
happens the virtualized system clock can advance in non-
uniform increments causing some processes to appear to use 
more processor time while others appear to use less.  

This problem isn’t limited to system level virtualiza-
tion. Measurements of specific sections of the code in a 
program often assume that the code execution time will be 
consistent as long as it hasn’t been modified. The problem 
with that assumption is that Thread-Internal and Core-
Internal enhancing techniques change the execution time 
depending on things other than what is being measured. For 
example, without a through understanding of the underlying 
architecture a program profiling utility run in a development 
environment can recommend changes that perform poorly in 
a production environment.   

This accuracy problem applies to the potential, or ca-
pacity, of a resource as well as the use of it. The most com-
mon assumption is that a resource can be completely used 
(i.e., 100% utilization) under ideal conditions. However, the 
nature of the virtualization of the resource can make that not 
only impossible but also make it impossible to tell what the 
maximum utilization really is. For example, the Core-
Internal enhancing techniques rely on sharing logic inside 
the processor core but that sharing creates hidden bottle-
necks that make complete utilization impossible. For exam-
ple, hyper-threading presents a second processor to the 
operating system but relies on a mix of integer and floating-
point instructions for parallelizing the use of the arithmetic 
logic. Anything other than the exact right mix and complete 
utilization cannot be achieved. In addition, the instruction 
fetch, decode and commit logic is shared between the two 
virtualized processors, which also limits the maximum utili-
zation, and again requires the right, but different, mix of 
instructions for best utilization. Optimizing use of both the 
arithmetic and the other logic units requires a workload with 
mutually exclusive characteristics.  

Planning the capacity of anything without really un-
derstanding what the true capacity is can lead to serious 
problems. Many large applications with less than optimal 
instruction mix, such as Microsoft’s SQL Server database, 
recommend disabling hyper-threading because the small 
gain from the limited increased parallelism isn’t worth the 
confusion caused by significantly overstated potential ca-
pacity.  

Because of the accuracy of measurements problem the 
capacity planner has a choice between two unpleasant op-
tions: using erroneous measurements or doing without 
measurements. Neither of these options is particularly use-
ful and it is not readily apparent which one is the better 
choice. What complicates understanding of this problem is 
that the magnitude of the inaccuracies varies significantly 
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across platforms. The IBM mainframe environment is much 
more mature and has resolved many of these problems but 
the Windows and Unix environments are much more prob-
lematic because of the number of hardware and software 
vendors involved. The long-term solution lies in operating 
systems and other measurement utilities using standardized 
implementations of new processor virtualization-specific 
features, once the systems designers implement those proc-
essors and the buying public becomes willing to pay for 
them.   

The impact of this inhibitor on capacity planning is 
that application and resource measurements are less reliable 
so any projections must include compensation for the in-
creased variability, which usually means including addi-
tional capacity.  
3.3 Lack of Application Parallelism 

It is generally accepted that designing a multi-tasking 
application is significantly more difficult than writing a sin-
gle program. How well the application design uses available 
parallelism has a direct bearing on how well it uses re-
sources in a parallel environment. Most mainframe capacity 
planners can relate a story regarding the upgrading of a sys-
tem from a uni-processor to an SMP system and seeing 
minimal, or even negative, improvement in transaction re-
sponse times. The reason for this is that the common trans-
action environment was designed as a single-threaded 
process, which means that it could not use the additional 
capacity. The negative impact to response times was caused 
by the increased communication and synchronization delays 
between the processors even when the application could 
only use one at a time. How the application uses parallel 
resources is extremely difficult to determine and requires a 
deep understanding of the applications involved and some 
amount of empirical testing. Some general assessment may 
be possible by measuring the underlying programming 
model, such as the “dwarfs” discussed in (Asanovic, et al. 
2006, p. 7-19) or by use of compiler optimizations. (Asano-
vic, et al. 2006, p. 34-37) Other programming models at a 
higher level of abstraction, such as Microsoft .NET Web 
Services, can also be used. “A programming model must 
allow the programmer to balance the competing goals of 
productivity and implementation efficiency. Implementation 
efficiency is always an important goal when parallelizing an 
application, as programs with limited performance needs 
can always be run sequentially.” (Asanovic, et al. 2006, p. 
31) Therefore, a common solution is to design the applica-
tion as many smaller components and let the operating sys-
tem provide the parallelism rather than the application 
design. Unfortunately, these issues apply to the operating 
system as well and the degree to which the operating system 
takes advantage of parallel resources varies between ven-
dors and even versions.  

The impact of this inhibitor on capacity planning is 
that applications may not scale well on newer larger systems 
because they cannot take advantage of the increased, but 
more parallel, capacity. Plans will require additional capac-

ity any time there is an increase in system parallelism in 
case the application cannot use it effectively.  
3.4 Benchmark Mismatch 

Benchmarks are applications that can be executed un-
der controlled circumstances and are repeatable so that re-
sults can be compared. Benchmarks are designed to mimic a 
particular type of processing but when the application de-
sign doesn’t match the benchmarks used to define the ca-
pacity units of the resources (SpecINT, TPC, MIPS, etc.) 
then the application cannot ever achieve full capacity use. It 
is extremely difficult to determine which benchmark an 
application most closely matches and that analysis should 
be redone for every release of the application. In addition, 
multiple applications, or even components of one applica-
tion, on a single system may have vastly different character-
istics so that it is impossible to match to a single 
benchmark. While this type of analysis can be done for a 
few important applications or systems, it is not practical for 
hundreds of systems in a large enterprise and trying to man-
age such a large environment with different capacity units 
for each system and/or application would likely be cost and 
effort prohibitive.  

The impact of this inhibitor on capacity planning is 
that the understanding of how an application will perform 
on a new system becomes more approximate. If an applica-
tion (not including the operating system overhead) currently 
uses 90% of a 150 SpecINT rated system then the replace-
ment system would need to be a 186 SpecINT rated system 
to get the application utilization down to 70%. However, 
because of the Benchmark Mismatch inhibitor the applica-
tion could actually use more or less but without knowing 
which a planner would need to be conservative by recom-
mending a larger system (how much larger would depend 
on the risk sensitivity of the given application).  
3.5 Hidden Resources 

Hidden resources are those resources that can signifi-
cantly impact the performance of a system or application 
but are hidden by some form of virtualization so they cannot 
be directly measured. Compensating for the hidden nature 
of these resources can be extremely complex and requires a 
much deeper understanding of how the resources are meas-
ured.   

The impact of this inhibitor on capacity planning is 
that critical resources are not visible in performance and 
usage measurements to explain the variability in application 
performance.  
3.5.1 Instruction Level Parallelism 

Instruction Level Parallelism (ILP) is the set of tech-
niques implemented inside the processor chip to increase 
the number of instructions completed per second. Most 
processor manufacturers do not disclose many of the details 
of these techniques let alone expose measurements of them. 
Many of the Thread-Internal and Core-Internal enhancing 
techniques are specific to ILP because they overlay the dif-
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ference stages of instruction execution. What is not obvious 
is that while a processor may appear “busy” executing an 
instruction it may in fact be waiting for some pipeline stall 
condition to clear. The length of that delay is time that the 
processor could have been doing productive work if the mix 
or order of instructions had been different. Operating sys-
tems don’t capture this time even if the processor should 
provide some way to access the measurement of it. This 
condition is exacerbated by techniques like hyperthreading 
because it relies on sharing some common transistor logic 
between two “processors” but no measurements are pro-
vided as to when the parallel logic units are saturated and 
the serialization through the common units becomes the 
limit to instruction execution. Because of the sharing of the 
common logic units it may not be even theoretically possi-
ble to get 100% utilization from both processors and, to 
make the situation worse, the maximum utilization of each 
of the virtualized processors in a hyperthreaded chip is de-
pendent not only on the workloads using them but also on 
the timing of how the instructions get interleaved. A less 
than optimal instruction mix, which is highly likely, will 
mean that the maximum utilization will vary from one proc-
essor to the next, from one minute to the next.  

The “ILP Wall” means that newer processor designs 
will likely incorporate evolutionary, rather than revolution-
ary, changes but some processors are already on the market 
use radically different techniques. For example, the early 
64-bit Mecerd processor from Intel was an implementation 
of a VLIW (Very Long Instruction Word) architecture. It 
was followed by the Intel Itanium that uses a variation of 
VLIW called EPIC (Explicitly Parallel Instruction Comput-
ing). Both VLIW and EPIC rely on the compiler to pack 
multiple operations into each instruction word, ideally one 
operation for each execution unit. If a valid instruction isn’t 
available then a NOP (no-operation) instruction is used 
which causes effects similar to a pipeline stall. While these 
approaches can significantly increase performance under the 
right conditions they are very dependent on the skills of the 
complier designers as well as those of the application de-
velopers.  

The impact of this inhibitor on capacity planning is 
that there is no longer a clear upper bound to the capacity of 
the system. At best the maximum capacity of a processor, 
measured as completed instructions per second, will vary 
around some average that will be application workload de-
pendent. At worst the maximum capacity of a processor will 
vary widely and erratically depending on the timing and mix 
of several workloads. This means that a low priority process 
on one of the processors of a hyperthreaded processor pair 
can significantly impact the performance of a higher priority 
process on the other processor of the pair. Additional capac-
ity will be required to compensate for the variability of both 
the measurements of usage and the upper limit of what can 
be actually be used.  

3.5.2 Memory Access 
The “Memory Wall” is no longer about the ability to 

implement very large amounts of memory but about how 
long it takes to access the installed memory. How many 
processor cycles per byte (average and peak) as opposed to 
how many bytes are accessed. Chip manufactures are in-
creasing both processor speeds and the number of transis-
tors on the chip. The amount of on-chip memory will also 
increase because that is one of the easiest way to use addi-
tional transistors and it also keeps access times somewhat in 
line with the processor speed. If that memory is used as 
cache then the cache coherency problems are compounded 
but if it used as main memory then the NUMA latency prob-
lems increase. Therefore, by attempting to solve one aspect 
of the “Memory Wall” problem another aspect is exacer-
bated. L1/L2 cache-coherency (maintaining synchronization 
between levels of cache) can significantly reduce the gains 
from increasing the size of the additional on-chip memory. 
(Asanovic, et al. 2006, p. 27) 

The impact of this inhibitor on capacity planning is 
that applications may not exhibit a linear relationship to 
processor increases because memory access constricts the 
flow of program instructions. A processor capacity increase 
that appears to be a large enough to meet the future needs of 
an application may not because memory access delays elon-
gate application response times. Additional processor 
capacity may be required to compensate for the effects of 
this inhibitor but because the extent of the delays is not 
measurable the additional capacity will have to be ap-
proximated.      3.5.3 Remote Access 

Distributed application and operating system designs 
can mask the usage of remote resources or services. When 
access time to remote resources varies over time or because 
of dynamic changes in the configuration then it may be im-
possible to understand what the full capacity of the re-
sources truly is.  

The impact of this inhibitor on capacity planning is 
that application performance is not dependent on just the 
system where it runs but on the performance of other sys-
tems in the enterprise. However, the extent of that depend-
ency is not directly measurable. Additional system capacity 
may not provide the expected application performance im-
provement because of critical path delays from poorly per-
forming remote systems.   
3.5.4 Processor Interconnection 

System components (processors, main memory, tim-
ers, support chips, I/O controllers, etc.) must be connected 
for data to flow through a system. These interconnections in 
general, and specifically between processors, can be a limit-
ing factor as processor speeds increase. In the early days of 
microprocessors the interconnect latency across a relatively 
simplistic system bus was more that adequate. However, 
processor clock rates now exceed three gigahertz and even 
more sophisticated interconnections (high speed busses, 
cross-bar switches and advanced interconnections like Hy-
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perTransport; http://www.hypertransport.org/) introduce 
significant latency. As processor designs change from sin-
gle-core to “many-core” interprocessor communication will 
become more asymmetric as the relative cost (increased 
latency and reduced bandwidth) of going off-chip increases. 
(Asanovic, et al. 2006, p. 27)  

The impact of this inhibitor on capacity planning is 
that, as the numbers of processors increase, the capacity 
usable by applications may not scale at the same rate as 
overall system size. Additional capacity may be required to 
compensate for the increased communication between proc-
essors, especially if the applications are designed using par-
allelism to take advantage of multiple processors. Such 
increased parallelism will increase communication delays 
due to memory sharing between application components.  
3.5.5 Asymmetric Processors 

A system has asymmetric processors when all of the 
installed processors are not exactly alike and interchange-
able. A system is usually defined by the general purpose 
processors that implement a specific instruction architecture 
and the special, or asymmetric processors, use a different set 
of instructions. A few systems allow mixing processors with 
the same instruction architecture but different features. For 
example, the HP Tandem Non-Stop supports two different 
processor clock speeds. When some processors have a to-
tally different instruction architecture they are usually not 
exposed directly as system processors but are used through 
operating system functions (such as graphics or I/O proces-
sors) or with extended instructions (such as floating-point 
processors like the Intel 80287 which added specific in-
structions to the 80286 general purpose processor). A more 
complex example is the use of a special purpose processor 
integrated into a network interface card to offload most of 
the processing for the TCP/IP protocol stack. This network 
card, called a TOE NIC (TCP Offload Engine Network In-
terface Card), requires changes to the implemented network 
software in the operating system or to the application to use 
the alternate protocol stack interface. Without one of those 
changes there is no improvement when a TOE NIC is in-
stalled but it still costs more to purchase and power.   

The impact of this inhibitor on capacity planning is 
that application performance can vary much more than ex-
pected from one system to another because the extent to 
which the application uses the special purpose processors is 
not known. Indeed, most systems do not provide any exter-
nal measurements of how such processors are used, let 
alone which processes are using them. Most system meas-
urements use some form of averages which will mask dif-
ferences between visible processors (such as when clock 
speeds are not the same) or simply ignore the processing 
done by the special purpose processors, which understate 
the resources needed by the application. Often system ven-
dors will change the implementation of special processors 
without providing substantive details. In extreme cases 
some features may be implemented in software unless the 
hardware feature is purchased (at additional cost, of course). 

Because of this uncertainty, performance tests on one sys-
tem cannot be used to predict performance on a different 
system and capacity planning must be based on the assump-
tion that the application will not get any benefit from the 
special processors. This assumption can lead to over provi-
sioning when special processors are available and the appli-
cation actually does utilize them. 
3.5.6 Control Structure Access 

Control structures are structured memory areas that are 
used by an operating system or an application to control 
behavior. As a greatly oversimplified example, an operating 
system could use an array to keep track of the running proc-
ess where each element has a place for the process identi-
fier, the last program counter, register values to save, the 
priority, the user, etc. Applications also use control struc-
tures, especially when they are multi-tasking. How the op-
erating system and application components implement 
mutual exclusion (shared resource or producer/consumer) 
when accessing the structures, and the resulting delays 
caused by waiting for access, has a significant impact on the 
perceived capacity of a system. The “hidden resource” here 
is parallelism, which is reduced as more components con-
tend for the control structures and more work is serialized. 
A single stand-alone component would not be delayed so 
that is 100% capacity. Mitigations include the traditional 
techniques to reduce the MP effect plus newer techniques 
such as transactional memory (Asanovic, et al. 2006, p. 28) 
and full-empty bits in memory (Asanovic, et al. 2006, p. 
28).   

The impact of this inhibitor on capacity planning is to 
change how workload characterization is viewed. The stan-
dard assumption is that the application workload should 
include those processes that are directly involved in applica-
tion processing so that non-volume related processes are not 
increased in the planning projections. However, that as-
sumption no longer applies because increased application 
volume can increase synchronization delays. Because con-
trol structure access delays are not easily measured it is al-
most impossible to determine when they will become the 
dominate component to response time. Most likely they will 
not increase in the same proportion as the application 
growth so additional capacity will be required as systems 
get larger and more complex to compensate for the in-
creased variability in system overhead.   
3.5.7 Portability  

Portability can be viewed as a form of virtualization 
because it masks the actual underlying hardware and soft-
ware by defining an abstract environment for the application 
that can be implemented across multiple configurations.  
Techniques to increase portability tend to generalize the 
underlying hardware which disallows the use of specific 
capacity and performance improving features. (Asanovic, et 
al. 2006, p. 37) Portability techniques rely on the skill of 
programmers and require both political and technical trade-
offs among development costs, implementation costs and 
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performance. One technique to mitigate the problems with 
portability that shows promise is the use of autotuners.  
Autotuners are benchmark type utilities that run repeated 
tests while changing configuration parameters to discover 
the optimal library implementations for each target envi-
ronment. This allows the application to be moved without 
being changed but still use specific features on each system. 
While promising for complex single system hardware, no 
successful autotuners exist for parallel systems. (Asanovic, 
et al. 2006, p. 38)    

The impact of this inhibitor on capacity planning is 
that application performance will scale more slowly than 
system performance because the application does not use 
the advanced features of a newer system. This relationship 
is not easily measured so when moving an application to 
another system additional capacity should be planned to 
allow for this inhibitor but the end result may be an under-
utilized system.  
3.6 Hidden Consumers 

Hidden consumers are components, software or hard-
ware, which use a resource in such a way that is it not easy, 
or even possible, to measure that usage. Hidden consumers 
reduce the available capacity of a resource in such a way 
that the reduction is not captured.   
3.6.1 Operating system features 

Some new operating systems are trying to address per-
ceived usability issues with background processes (defrag, 
indexing, virus scanning, etc.) that are done as part of the 
operating system idle loop. The problem this creates is that 
they are excluded from the operating system computations 
of system busy because they viewed as only consuming a 
resource that would not have been used anyway. Even 
though use of the processor can be discounted, the use of 
other resources, such as power, memory, memory access, 
cache or I/O, is not considered. If the operating system 
bases its decisions on processor usage then these other re-
sources can be overcommitted because processor usage is 
understated but the other resources are still being consumed.   

File system features (RAID, encryption, compression, 
etc.) can also have an impact because their use is not con-
trolled by the application. In fact, how they are configured 
may not be exposed to the application or captured in any 
measurement data. Sudden changes in capacity or resource 
usage could be a result of a change to a configurable feature 
rather than an increase in application volume or installation 
of additional resources.   

The impact of this inhibitor on capacity planning is 
that detailed configuration changes should be tracked, but 
seldom are, and correlated with changes in capacity and 
resource usage. Without understanding how such configura-
tion changes affect capacity and usage, the planner cannot 
make meaningful predictions. One alternative is to assume 
measurements reflect enabled features and risk performance 
failure if that’s not true and the features are later enabled. 
The other alternative is to assume measurements reflect 

disabled features and risk underutilizing resources if that’s 
not true and the features a later disabled. In either case, the 
business trade-off between value of using such features and 
their impact on capacity is complex and often very political.  
3.6.2 Virtualization Implementation 

The key concept with system level virtualization is that 
the underlying resources are shared in a way that increased 
parallelism. In other words, two or more systems appear to 
be using the same physical hardware at the same time. This 
is a very complex topic, that cannot be covered adequately 
here, and this statement by Michael Salsburg, et al. provides 
some insight into those complexities: 

For example, what is the basic overhead of run-
ning a hypervisor on which the OS images 
dwell? How does this overhead change as a 
function of the number of virtual machines and 
physical CPUs? Can we accurately predict the 
effects of queueing both at the physical and vir-
tual CPU levels? What is the impact of I/O ac-
tivity? How about the impact of allocating 
specific quanta of CPU cycles to each machine? 
How is performance affected by the selection of 
a specific virtual technology?  
(Salsburg 2006) 
The trick to successful virtualization, regardless of the 

techniques used, is to maximize the use of resources without 
negatively impacting application performance. Virtualiza-
tion raises questions about the overhead of the hypervisor 
(virtualization control software), clock synchronization and 
granularity, processor dispatch granularity (does the hyper-
visor dispatch processors individual or does a guest operat-
ing system wait until there are as many physical processors 
available as defined logic processor units for that guest), 
and the impact of interrupt delays on the guest operating 
systems. All of these, and other, topics act as hidden con-
sumers of resources because they are usually not seen and 
measured by the guest operating systems and the hypervisor 
does not provide detailed enough measurements to under-
stand their impact at the workload and process level.   

The impact of this inhibitor on capacity planning is 
that the environment becomes much more complex and 
much more dynamic. Planning at the resource level be-
comes impossible for two reasons. First, the resource usage 
measurements are imprecise and unreliable at best and may 
even be incorrect in some cases. Second, what drives re-
source consumption is no longer just the application busi-
ness drivers but everything running on all of the other guest 
operating systems sharing the same physical resources. The 
lowest priority work in a guest with a large share of the 
physical resources can easily run before, or even instead of, 
the highest priority work in another guest.  

4. Far Reaching Effects 
The accumulation of all of the Capacity Inhibitors has 

long-term and far reaching effects on capacity planning. 
Capacity planning in the Age of Virtual Parallelism is like 
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peeling back an onion. The planner can continually go to 
yet another level of detail whenever more precision is 
needed but at some point the cost will outweigh the benefit. 
Resources, both human and computer, can be expended to 
gather the required information and measurements for any 
sufficiently important system or application. The problem 
comes when trying to apply that same precision across all 
servers and applications in a large environment. Capacity 
planning should always be about the business relationship 
but now, in addition to defining the relationship between the 
business and the technology, it must also define the rela-
tionship between the business and the planning process it-
self. Planning must change focus from managing resources 
to meeting application business objectives and it must do so 
with introspection, knowing that the planning process can 
easily become a significant cost. Like the old engineering 
adage, sometimes close is good enough.   
4.1 Workload Characterization 

Workload characterization used to be a relatively 
straight forward matter of assigning processes or users or 
transactions or whatever to workload groups. But now, as 
more and more resources are shared in ever increasingly 
complex ways, those assignments are not so simple. Virtual-
ization at so many different levels makes it almost impossi-
ble to assign the use of a resource to a single application 
workload. The standard apportionment techniques (Norton 
2004) for approximating how much usage of a resource 
should be attributed to an application are no longer adequate 
because they rely of either precise measurements or a con-
sistent ratio of usage over time. Precise measurements are 
lost for all of the reasons already discussed and the very 
nature of virtualization is to allocate resources as needed, 
certainly not in the same ratio from one time interval to the 
next.  
4.2 Building Models 

While capacity planning involves much more than 
building models, the ability to accurately represent a system 
or application with an abstract model is still a key tool in the 
planning process. The commercial and Open Source model-
ing tools available today are all quite capable of modeling 
complex virtualized environments. The questions are: What 
is the expected granularity and precision of the results? and 
What is the required effort to get those results?    
4.2.1 Service Time Calculations 

Models use abstraction to represent the time something 
takes at each stage of a process. Each stage is a server or 
service center and the time is the corresponding service 
time. Because the service center is an abstraction of a more 
complex process, the service time is also an abstraction. 
Different types of models use a variety of techniques to 
achieve a sufficient level of abstraction to make the model 
practical to solve and yet have a sufficient level of detail to 
give the results meaning. As shown in the previous discus-
sion of Enhancing Techniques, there is almost always more 
complexity at the next level down. While theoretically pos-

sible to build a model of an entire environment, from the 
behavior of the application to the way the network passes 
data to the operating system services to the management of 
cache to the pipeline of the microprocessor to the specula-
tive execution of the underlying micro-op instructions, such 
a model would most likely take forever to build and some-
what longer to run. The success of a model lays in the abil-
ity to cost effectively approximate the behavior at each 
service center while producing results in enough detail to 
allow for meaningful predictions. 

How do the Capacity Inhibitors affect this abstraction 
of service time? It may be overstated (longer) because of 
reduced clock speed at lower utilizations (Processor Throt-
tling). It may not be measurable within the needed precision 
for the desired results (Accuracy of Measurements). It may 
be understated because the application cannot use all of the 
components that have been abstracted into the service center 
(Lack of Application Parallelism). The capacity of the ser-
vice center may be either overstated or understated because 
the application is significantly different from what was used 
to determine the capacity (Benchmark Mismatch). It may be 
either overstated or understated because the instruction mix 
in the application doesn’t match the processor designer’s 
assumptions (Instruction Level Parallelism). It may be un-
derstated because future transaction volumes don’t account 
for the increased latency when the system is expanded and 
remote, instead of local, resources are used (Memory Ac-
cess and Remote Access). It may be understated for meas-
urements at lower utilization (Processor Interconnection). It 
may be understated because it doesn’t account for an entire 
class of resources that could not be available on the target 
system (Asymmetric Processors). It may be understated 
because mutual exclusion delays increase non-linearly as 
the service center utilization increases (Control Structure 
Access). It may be either overstated or understated because 
the new system is configured differently (Portability). It 
may be understated because of interference from other 
workloads that will not grow at the same rate as the applica-
tion under investigation (Hidden Consumers). 

The truly confounding dilemma is that some condi-
tions cause overstatement of service time to increase as ser-
vice center utilization increases and others cause it to 
increase as service center utilization decreases.  
4.2.2 Uniformity 

Many of the assumptions made when building a model 
are about how work is distributed to the service centers. For 
example, the processors in an SMP system (tightly-coupled 
processors) can be modeled as a single server where the 
service time is adjusted for the number of processors and 
the interprocessor communication (Menascé 1994, p. 263-
4). Underlying this technique is the assumption the applica-
tion can actually use all of the processors. Several of the 
Enhancing Techniques (i.e., hyperthreading) change the 
validity of this assumption and those changes can vary dy-
namically as systems load varies. The ability to spread a 
given workload across all available similar resources may 
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not always be a good assumption. Loosing the ability to use 
such simplifying assumptions will increase the time to both 
build and to run a model.  

5. Conclusion 
 Virtualization is the current hot solution but along 

with it comes a host of other problems. Virtualization is not 
one simple technique but many techniques to increase paral-
lelism, implemented at many different levels. Sometimes 
these techniques complement each other and sometimes 
they work against each other. How these interactions impact 
the planning process is far too complex to predict. This pa-
per explored many of the techniques used to virtualize and 
parallelize resources and it discussed some of the impacts of 
each technique on planning. The final conclusion isn’t a 
definite answer about how to mitigate these impacts but 
rather a heightened awareness of some of the things that can 
go wrong. The very nature of a discussion about precision 
raises the issue of the precision of the discussion. Many 
details were left out or glossed over because of limited 
space but also because the details aren’t the real issue. All 
of the topics discussed are in very rapidly changing areas of 
computer science and any specific details would be outdated 
long before publication. On the other hand, few organiza-
tions have only the latest and greatest installed. A mix of 
old and new technology means that there is no single an-
swer to any of the issues raised here. Hopefully the explora-
tion started here will grow into a discussion that 
encompasses many different areas and disciplines. The 
Berkeley study (Asanovic, et al. 2006) is very interesting 
because the contributors are from so many different areas 
and different universities.  

The final thought is on the future of capacity planning. 
Given the complexities, uncertainties and variabilities dis-
cussed here, what’s a planner to do? The evidence is mount-
ing that planning resources will become harder and less 
precise as more and more of these techniques, and the ones 
to follow, are implemented. What remains is to go back to 
the basics of what capacity planning should be about any-
way, understanding the needs of the business. Planners must 
now, even more than ever, think in terms of identifying and 
reducing bottlenecks that prevent applications from achiev-
ing the business objectives. Efficient use of resources isn’t 
the issue because it’s almost impossible to understand. Plan-
ning should take a holistic view that balances costs, techni-
cal, financial and human, against the overall benefits with 
the understanding that there will always be localized 
inefficiencies that inhibit achieving global optimization.  
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