
 1

The Myth of Precision Planning:
Understanding Capacity in an Age of Virtual Parallelism

Dr. Tim R. Norton
Inovant, LLC, A Visa Solutions Company

CMG 2007 Session 556
Virtualization is the current hot solution for a variety of computing problems. However, the complexities it
introduces create additional problems when trying to precisely plan capacity. Virtualization is really the
application of techniques to increase parallelism, either actual or perceived, and has been used in many
different ways for a very long time. This paper explores many of the techniques used to virtualize and par-
allelize resources, the impact of those techniques on capacity and the resulting changes in the perception
of precision for both planning needs and measuring usage.

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
© 2007 Tim R. Norton. All rights reserved. Permission is granted to publish this article in the 2007 Computer Measurement Group Conference Proceedings.
The views expressed in this paper are solely the personal views of the author and do not represent the views of Visa, USA or Inovant, LLC. All trademarked
names and terms are the property of their respective owners.

1. Introduction
The key to understanding capacity planning has al-

ways been two-fold. First is the understanding of the de-
mand for resources. Second is the understanding of the
available resources. Ever since the early days of computing
there has been a push/pull relationship between demand
(workloads consuming resources) and supply (resource ca-
pacity). Workloads grow and push the need for more capac-
ity. The complexity resulting from larger workloads
increases the desire for planning precision to avoid the ex-
penses of over-provisioning. Capacity becomes less expen-
sive and pulls bigger workloads out of developers.
Reduction of cost decreases the need for planning precision
because over-provisioning is less costly than the effort re-
quired for greater precision. Moore’s Law, which states that
the number of transistors on a single integrated circuit will
double every 18 months, has been the enabler of capacity
potential by providing consistently increasing capacity at
consistently decreasing cost, but limitations in theoretical
design and in practical manufacturing threaten to disrupt the
consistency of the cost/value curve. (Tummala 2006) While
advances in semiconductor technology have continued to
allow manufactures to achieve the Moore’s Law transistor
density, the design problems created by the extreme com-
plexity of using that many transistors have forced all of the
major processor manufacturers to use more parallelism. The
Electrical Engineering and Computer Sciences department
at the University of California at Berkeley conducted a two
year multiple university research project on this topic. The
published results, The Landscape of Parallel Computing
Research: A View from Berkeley, is a 56 page report with
134 references that provides compelling insights into using
parallelism and the direction of the latest processor designs.
“This shift toward increasing parallelism is not a triumphant
stride forward based on breakthroughs in novel software
and architectures for parallelism; instead, this plunge into
parallelism is actually a retreat from even greater challenges
that thwart efficient silicon implementation of traditional
uniprocessor architectures.” (Asanovic, et al. 2006, p. 5)
The main focus of the Berkeley research was to understand

all aspects of what they see as a change in the industry from
uniprocessors to “multicore” processors to “manycore”
processors, the idea being that it is both more efficient and
more effective to use a very large number of simpler proc-
essors than try to design and build ever more complex scalar
processors. For example, Intel has demonstrated a single
chip with 80 processors (Greene 2007) and Cisco is ship-
ping a product with 188 processors (Asanovic, et al. 2006,
p. 7).

How does such a shift from scalar uniprocessors to in-
creasingly parallel environments affect the capacity plan-
ning process? It increases the demand for resources because
of additional work that must be done for synchronization
and communication. It decreases the capacity because some
resources are not available, either because workloads do not
parallelize well or because of actual dynamic capacity
changes. This paper introduces the new term “hidden con-
sumers” for the former and the new term “hidden resources”
for the latter. However, before looking at these capacity
issues a discussion of the techniques to implement the shift
is required. Section 2 discusses the Enhancing Techniques
that are being used to increase parallelism, from virtualized
instructions to virtualized systems. Section 3 discusses Ca-
pacity Inhibitors, which are beneficial aspects of the En-
hancing Techniques that either negatively impact actual
capacity or mask it so that it cannot be measured.

2. Enhancing Techniques
The designers of computing systems and components

have developed a number of parallelizing techniques to im-
prove overall system performance and capacity. While
manufacturers have unique marketing terms for their im-
plementation of specific functionality these improvements
fall into four general categories, introduced here as: Thread-
Internal, Core-Internal, Multi-Core And Multi-System. This
section explains what these improvements are and Section 3
shows how they complicate capacity analysis.

The Berkeley study has taken an interesting approach
by identifying 12 “Conventional Wisdoms” to illustrate how
they see the changes to computing. (Asanovic, et al. 2006,

The Myth of Precision Planning CMG07 Session 556, December 6, 2007

 2

p. 5-6) While this study covers many different aspects of
this extremely broad topic, including application design and
new benchmark techniques, several of these conventional
wisdoms are related directly to understanding the impact of
the changes on planning capacity. CW#1 (“Conventional
Wisdom” #1) is the “Power Wall” and is the change from
thinking of power as free to power being expensive. This is
the direct result of the massive increase in the number of
transistors in processor chips. The improved manufacturing
techniques that have allowed the increase have also reduced
the cost of a single transistor to almost nothing. However,
each transistor consumes power and a large number of them
consume a lot of power. CW#7 is the “Memory Wall” and
is the change from thinking of any complex function, like
multiply or divide, as slower than simple memory access,
like load or store. The speed of modern processors has in-
creased so much relative to the speed of memory, even L1
cache, that the difference in processing cycles to execute
these instructions is completely overwhelmed by the num-
ber of cycles lost waiting on memory. For example, a typi-
cal processor can do a multiply in four cycles and while a
load only takes one cycle to execute it can take 200 cycles
to access memory. CW#8 is the “ILP Wall” and states that
there are diminishing performance returns for the added
complexities associated with increased ILP (instruction
level parallelism). CW#9 is the “Brick Wall” (the combina-
tion of the Power Wall + the Memory Wall + the ILP Wall)
and states the while the doubling of uniprocessor perform-
ance had taken 18 months, it now takes over five years be-
cause of design complexities. CW#11 is the change from
thinking of increased clock frequency as the primary
method of improving performance to the new view that in-
creased parallelism as the primary method. CW#12 is the
change from thinking that less than linear scaling is a failure
to the realization that any cost effective implementation that
improves application performance is a success.

These Conventional Wisdoms illustrate the growing
change toward increased parallelism and the use of virtual-
ization to leverage it. The focus of virtualization today is at
the system level where multiple operating system images
are run in parallel on a single hardware server. However,
virtualization has been implemented at several different
levels to achieve increased parallelism and thus improve
application or system performance. We can look at these
improvements in four broad categories: Thread-Internal,
Core-Internal, Multi-Core and Multi-System.
2.1 Thread-Internal

Thread-Internal refers to functionality that increases
the number of architectural instructions that can be com-
pleted for a programming thread of execution in a given
amount of time. Including techniques referred to as ILP
(instruction level parallelism), the techniques in this cate-
gory strive to complete more instructions per clock cycle.
When the average number of instructions completed per
clock cycle is greater than one, the processor is considered
super-scalar. Most modern processors are implemented with

micro-instruction designs to increase ILP. Architectural
instructions are visible to programmers as opposed to mi-
cro-instructions which are used in the actual execution unit
logic. David Patterson, one of the co-authors of the Berke-
ley study, is a co-author of an excellent text, Computer
Architecture, A Quantitative Approach (Hennessy 2007),
that provided most of the in-depth information for the
following discussion of ILP techniques. Thread-Internal
techniques provide a virtual architecture that hides the
underlying transistor logic and the various ILP methodolo-
gies. Some of the major Thread-Internal techniques are:

• Pipelining: This is the technique where the execu-
tion of multiple architectural instructions is over-
lapped by implementing them in stages. Each
stage, such as fetch, decode, execute, etc., uses a
different section of the transistor logic in the proc-
essor. A stall is when an instruction cannot move
to the next stage in the pipeline because it is wait-
ing on something, like a memory access or the re-
sults of another instruction. Vendors often measure
processor performance in terms of the theoretical
instructions per second or by using highly tuned
benchmark applications. The effectiveness of pipe-
lining depends heavily on the skill of both the ap-
plication programmers and the compiler designers.
Pipeline stalls mean fewer instructions executed
which effectively reduces system capacity.

• Out-of-Order Execution: This is the technique
where one architectural instruction is executed be-
fore one that precedes it in the program but that has
stalled. The effectiveness of out of order execution
also depends heavily on the skill of both the appli-
cation programmers and the compiler designers but
tends to improve performance by finding useful
work when an instruction stalls.

• Instruction and Data Cache: This is the tech-
nique where much faster (and therefore much more
expensive) memory is implemented directly on the
same chip as the processor (or closer to it than
“main” memory). The combination of faster mem-
ory access plus reduced connectivity delays greatly
reduces the time to fetch instructions or data from
memory. The additional overhead for managing
cache and finding instructions or data in the cache
memory is usually significantly less than the appli-
cation performance improvement but poor applica-
tion or operating system design can overwhelm
even multi-level cache designs. Cache generally
increases the number of instructions executed in a
given time because even the best pipelined and
out-of-order execution designs eventually have to
get more instructions and data from memory.

• Branch Prediction: One of the problems with
pipelined and out-of-order execution is the delay
caused by a conditional branch in the program

The Myth of Precision Planning CMG07 Session 556, December 6, 2007

 3

thread of execution. Until the result of the condi-
tion is known, the processor does not know which
instructions can be selected for execution. Many
processor designs use sophisticated techniques to
predict which path the branch will take and thus be
able to do productive work instead of stalling until
the conditional computation is finished. If the pre-
diction was wrong, then that work is thrown away
and instructions in the correct path are fetched and
executed. The overhead for branch prediction is
generally low so it usually improves performance
but a programmer or compiler designer that does
not understand the prediction assumptions used by
the processor can significantly impact performance
with poorly designed software.

• Speculative Execution: This is the technique
where both branch paths are executed until the
branch condition is known, at which time the re-
sults of instructions from the incorrect path are dis-
carded. Speculative execution adds considerable
complexity to the processor design but usually im-
proves performance. Because it is not as sensitive
to program design, it usually increases the overall
capacity of the processor unless the rate at which
the program branches exceeds the number of
speculative execution paths in the processor de-
sign, at which point the pipeline will stall.

• Vector Processing: This is the technique where a
single instruction acts on multiple data elements at
one time. Vector processing is referred to as SIMD
(single instruction, multiple data) using Flynn’s
Taxonomy for parallel architectures. (Hennessy
2007, p. 197) This can greatly improve perform-
ance but it is generally limited to specific work-
loads, like image processing and graphic display.
Performance improvements are often overstated
based on specific performance tests so the impact
on capacity is very workload dependent.

2.2 Core-Internal
Core-Internal refers to functionality that increases the

number of architectural instructions that can be completed
by a processor core in a given amount of time. Core-Internal
techniques provide a virtual processor architecture that
hides underlying implementations used to reduce cost and
power usage.

• Alternate Pipeline: This is the technique were the
execution of multiple architectural instructions is
overlapped by implementing additional execution
unit logic or entire pipelines for common architec-
tural instructions. For example, if a processor im-
plemented a second ALU (arithmetic unit) then
two ‘add’ instructions could execute at the same
time. The Intel Pentium processor implemented a
second pipeline, called the V-pipe, which allows
two integer instructions in the same execution

stream to execute at the same time under the right
conditions. (Abrash 2001) This approach reduces
the numbers of stalls caused by not having an exe-
cution unit available for an instruction but it sel-
dom performs even close to the “two instructions
at once” expectations of the marketing department.
Because the additional execution resources are
specific to selective instructions, the performance
improvement is highly dependent on the mix of in-
structions in the program. Few processors provide
measurement information to show how these addi-
tional resources are being used. Even when the
processor does provide a way to get these meas-
urements, very few of the performance reporting
utilities collect them because of the lack of stan-
dardization across processors, even from the same
vendor.

• Hyperthreading: This is also a technique where
the execution of multiple architectural instructions
is overlapped by implementing additional execu-
tion unit logic. The difference from pipelining is
that with hyperthreading the instructions can be se-
lected from different threads of execution to avoid
stalls from lack of enough of the right type of in-
structions in a single program or stalls from trying
to access common memory locations. The most se-
rious capacity problem with hyperthreading is how
the additional resources are made available. The
implementation of an alternative pipeline is rela-
tively transparent to programs, including the oper-
ating system, because all of the instructions are
selected from a single thread of execution. Hyper-
threading selects instructions from different
threads, which means the operating system must
have some way to select which threads the instruc-
tions can come from. This is generally done by
presenting the additional resources as another
processor to the operating system (referred to as
two complete “architectural states”) that effectively
allows switching between two threads of execution
without operating system context switch overhead.
The problem with this approach is that the very na-
ture of hyperthreading is that there is common
transistor logic between these two ‘virtual’ proces-
sors that acts as a bottleneck preventing 100%
utilization of both at the same time. Therefore,
from a capacity standpoint, a hyperthreaded proc-
essor will always appear to have capacity that is
not being used. Unfortunately, neither the proces-
sors nor the performance utilities provide informa-
tion as to extent of the bottleneck or when the
processor is truly saturated. In addition to being
dependent on the mix of instructions within each
thread of execution, hyperthreading performance is
also dependent on how well the operating system
selects threads to interleave. Because the operating

The Myth of Precision Planning CMG07 Session 556, December 6, 2007

 4

system sees the hyperthreading resources as a sec-
ond, and equal, processor it seldom, if ever, makes
the correct selection.

2.3 Multi-Core
Multi-Core refers to functionality that increases the

number of architectural instructions that can be completed
by the total number of processors in the system in a given
amount of time. Multi-Core techniques provide a virtual
system architecture that hides specific characteristics of the
underlying processor chip and memory implementations.

• Dual/Quad Core: This is the technique where
multiple processors are fabricated on a single chip.
Multi-core chips virtualize the use of some chip
transistor logic to improve parallelism such that the
performance increase is greater than the increase in
manufacturing costs or power usage. One of the
advantages of this technique is that interprocessor
communication and shared cache access are much
faster because they are direct between the compo-
nents and avoid use of the slower system bus. How
well the operating system places processes that
communicate or share memory on processors in the
same core can make a significant difference in per-
formance.

• NUMA: NUMA (Non-Uniform Memory Access)
is the technique where each section of main mem-
ory is physically packaged with a group of the
processors in the system (usually one to four proc-
essors). This causes different memory access times
depending on the location referenced. Most
NUMA systems use large and complex cache
memory with complex cache coherence techniques
to reduce the average memory access time but
there is still a significant penalty for a cache miss
to a memory location in a different processor
group. (Hennessy 2007, p. 202-224) NUMA sys-
tems virtualize the underlying memory architecture
to reduce the communications costs that increase
when scaling systems with a large number of proc-
essors. Application performance will vary depend-
ing on application design (memory sharing and
communication between components) and cache
management (which mitigates the remote access
penalty). Some operating systems have very so-
phisticated process placement algorithms to detect
memory sharing and/or communication between
processes and move them to a common processor
group. Many new Multi-Core processor designs
use NUMA techniques in systems with multiple
processor chips.

• Symmetric Multi-Processor: SMP is the tech-
nique where a system is implemented with multiple
equal processors (i.e., interchangeable from the
perspective of the programmer) that have equal ac-
cess to main memory (also called UMA or Uni-

form Memory Access). SMP systems virtualize the
processor/memory environment to reduce applica-
tion complexity and development costs. Specific
application designs to maximize the parallel use of
multiple processors require additional support,
such as High Performance FORTRAN, to expose
the underlying architecture. Interprocessor com-
munication, also known as the MP effect (multi-
processor effect), reduces the incremental capacity
when another processor is added to the system (the
overall capacity increase to the system is less than
the capacity of the uni-processor added). The ex-
tent of the MP effect depends on the nature of the
interprocessor communication and can be so severe
that adding more processors actually reduces over-
all system capacity. (Gunther 1996) In addition,
how the operating system supports the additional
processors is critical to overall capacity and
performance. For example, the Microsoft Windows
95 operating system was designed for use on single
processor systems so any additional processors are
simply ignored. Even if both the hardware and the
operating system fully support multiple processors,
an application not designed to use them will not
perform better as processors are added to the sys-
tem. In fact, because of the MP effect, application
performance usually decreases.

• Asymmetric Multi-Processor: AMP is the tech-
nique where a system is implemented with multiple
processors that are not equal (i.e., interchangeable
from the perspective of the programmer). The de-
gree of asymmetry can be anywhere from minor
functional differences to totally different instruc-
tion architectures. Access to main memory can be
either uniform or non-uniform, depending on how
the different processor types are implemented.
Generally one type of process is seen by the
operating system and/or application programs as
the “primary” architecture and the other types are
used to off-load functionality. AMP systems
virtualize the specific functions supported by the
unique processors. Use of asymmetric or off-load
processors significantly complicates operating
system and application design but can significantly
improve performance. Unfortunately, measurement
of the use of these processors is extremely difficult
which makes quantifying improvement also ex-
tremely difficult.

2.4 Multi-System
Multi-System refers to functionality that increases the

total amount of work that can be completed by an applica-
tion (or set of applications) in a given amount of time. The
systems can be symmetric or asymmetric and there is no
requirement for homogeneity in the environment. Each sys-
tem generally implements one or more service functions
based on standard protocols. Multi-System techniques pro-

The Myth of Precision Planning CMG07 Session 556, December 6, 2007

 5

vide a virtual system architecture that hides specific charac-
teristics of the underlying system and communication im-
plementations.

• Clusters: This is the technique where multiple in-
dependent operating systems jointly provide the
supported services through operating system im-
plemented communication and synchronization.
Clusters can be limited to load sharing or to fail-
over or they can provide both. Application com-
plexity varies, depending on the requirement for
maintaining a global state across all of the applica-
tion components. Communication between systems
increases as the amount of information that must be
synchronized increases, which reduces overall ca-
pacity and increases application complexity. Even
when each component of the application on each
independent system is able to function autono-
mously there is still the problem of distributing
work to the systems. There are many techniques to
accomplish the distribution of work, including ad-
ditional load balancer systems in front of the clus-
ter that simply redirect work to application systems
based on some predefined criteria. How well they
achieve true balance has a profound effect on the
overall capacity of the environment. Poor balance
means that additional capacity will not be fully
utilized so the overall capacity requirement must
be increased to compensate for the imbalance.

• Distributed Applications: This is the technique
where multiple independent systems jointly pro-
vide the supported services. This is similar to Clus-
ters above but communication is implemented
completely in the application instead of in the op-
erating system. Actual implementations are often a
combination of true cluster and distributed applica-
tion designs. Where clusters are almost always im-
plemented with multiple identical or very similar
systems, distributed applications can be imple-
mented with systems using quite different architec-
tures.

• Distributed Operating Systems: This is the tech-
nique where a single operating system image is de-
ployed across multiple physical systems.
Distributed operating systems virtualize the under-
lying implementation to present a single uni-
processor view to applications, thus masking them
from changes in the underlying environment. There
are many approaches to distributed operating sys-
tems with vastly different designs, each trying to
compensate for problems, such as communication
between the systems, load balancing, process
placement or memory access. Capacity planning
for distributed operating systems is extremely dif-
ficult and immature. Fortunately, the complexities
of implementing distributed operating systems
have limited their use to very specialized cases,

mostly in academic research, so lack of planning
methodology has not been a major issue. However,
many distributed operating systems concepts have
been incorporated into database systems, clusters,
and distributed application designs so the problems
related to these complexities are starting to be seen
in commercial environments.

• Grids and Networks-of-Workstations: This is
the technique where multiple workstations are used
for large computational problems. A Network-of-
Workstations (NOW) temporarily uses systems
that are idle during non-prime times. A Grid is
usually deployed with dedicated systems. Both
provide a virtual supercomputer at a significantly
reduced cost either by using existing, but idle, re-
sources (NOW) or by using significantly lower
cost hardware (Grid). The most notable use of this
approach is the SETI@Home project where indi-
viduals install a special screen saver that commu-
nicates with the project servers to do computations
for the Search for Extraterrestrial Intelligence
(SETI, see http://setiathome.berkeley.edu/). There
are significant issues when processing capacity of
workstations is appropriated, either during off
hours or when the workstation is idle. Issues in-
clude the way additional work is scheduled, proc-
ess placement (and if redeployment of an already
placed process is allowed and when and how it can
be moved), and communication requirements. Ca-
pacity planning is significantly more complex be-
cause it must include not only the plan for the
virtual supercomputer that is composed of a very
dynamic group of workstations but also the impact
on performance when the owner of the workstation
wants to use it. (Menascé 1996)

3. Capacity Inhibitors
Capacity inhibitors are anything that keeps an applica-

tion from using the full capacity potential of a resource.
Inhibitors usually result from solving a significant problem
which makes avoiding the inhibitors extremely difficult
because the original problem has an even greater impact.
The outcome of all of the capacity inhibitors is that planning
precision is reduced by the introduction of uncertainty or
variability.
3.1 Processor Throttling

To address the “Power Wall” many processors have
implemented some form of throttling to reduce power con-
sumption. This can be done either by the operating system
when it enters an idle state (when no processes are ready to
be dispatched, or run, on a processor) or by the ACPI (Ad-
vanced Configuration and Power Interface, see
http://www.acpi.info/) support chips, or by both. The proc-
essor clock speed can be reduced or the processor can be
halted or placed in some form of reduced power state.

The Myth of Precision Planning CMG07 Session 556, December 6, 2007

 6

For example, the power state of the Intel Duo Core
processors can be controlled independently by the operating
system or the ACPI mechanisms and placed into a number
of different states (halt, stop clock, deep sleep, etc.).
(Gochman 2006, p. 93) The critical issue is how the operat-
ing system and/or performance measurement software ac-
count for processor usage in these situations. If overall
processing time is not accumulated for a processor when its
clock is stopped then it will appear that the capacity of the
system has been reduced by a processor for that measure-
ment interval. However, if time is accumulated then the
processing time for a process using that processor could be
overstated by the amount of time the processor was stopped.
If the processor clock speed is reduced at lower system utili-
zations then the capacity usage of an application can be
overstated and the response time elongated. The exact crite-
ria used to initiate these changes are usually not exposed in
performance measurements.

The impact of this inhibitor on capacity planning is
that measurements of both system capacity and application
usage of that capacity become dependent on system load.
As the system gets busier its capacity increases and the ap-
plication gets work done faster, so using a traditional
utilization threshold may trigger a premature capacity
increase. 3.2 Accuracy of Measurements

Any capacity analysis relies on measurements of re-
sources, both usage and potential. Virtualization at any level
tends to generalize theses measurements because the point
of the virtualization is to abstract the underlying resources.
Problems arise when the entity collecting the measurements,
be it the operating system, an application or a performance
measurement utility, doesn’t understand that the measure-
ments are of the generalized resource instead of the underly-
ing actual resource. A measurement technique must make
assumptions about what is being measured in order to create
a practical implementation, but these assumptions can cause
significant problems when the resources are virtualized. For
example, many operating systems measure the time a proc-
ess uses the processor by recording the time from the sys-
tem clock when the process is dispatched and again when
the state of the process is saved so another can be dis-
patched. The difference between the two times is how long
the process ran for that dispatch event and the accumulation
of those differences over the life of the process is the total
time it used the processor. This is a perfectly reasonable
approach because the operating system has total control
over which processes run on which processors. A process
cannot start or stop running without operation system in-
volvement. When the operating system is running as a guest
in a virtualized environment then this measurement depends
on how the system clocks are virtualized. If the guest oper-
ating system uses the actual system clock then any time that
a different guest operating system was running will be ac-
counted to whatever process was running (or processes in a
multiple processor system). The guest operating system is
unaware of the fact that it lost the use of the physical proc-

essors for a while and greatly overstates the amount of time
some processes used the processor. If the guest operating
system uses a virtualized system clock, then how it is virtu-
alized becomes a significant issue. Many operating systems
update the system clock using a timer interrupt but virtual-
ization can cause the interrupts to be delayed. When this
happens the virtualized system clock can advance in non-
uniform increments causing some processes to appear to use
more processor time while others appear to use less.

This problem isn’t limited to system level virtualiza-
tion. Measurements of specific sections of the code in a
program often assume that the code execution time will be
consistent as long as it hasn’t been modified. The problem
with that assumption is that Thread-Internal and Core-
Internal enhancing techniques change the execution time
depending on things other than what is being measured. For
example, without a through understanding of the underlying
architecture a program profiling utility run in a development
environment can recommend changes that perform poorly in
a production environment.

This accuracy problem applies to the potential, or ca-
pacity, of a resource as well as the use of it. The most com-
mon assumption is that a resource can be completely used
(i.e., 100% utilization) under ideal conditions. However, the
nature of the virtualization of the resource can make that not
only impossible but also make it impossible to tell what the
maximum utilization really is. For example, the Core-
Internal enhancing techniques rely on sharing logic inside
the processor core but that sharing creates hidden bottle-
necks that make complete utilization impossible. For exam-
ple, hyper-threading presents a second processor to the
operating system but relies on a mix of integer and floating-
point instructions for parallelizing the use of the arithmetic
logic. Anything other than the exact right mix and complete
utilization cannot be achieved. In addition, the instruction
fetch, decode and commit logic is shared between the two
virtualized processors, which also limits the maximum utili-
zation, and again requires the right, but different, mix of
instructions for best utilization. Optimizing use of both the
arithmetic and the other logic units requires a workload with
mutually exclusive characteristics.

Planning the capacity of anything without really un-
derstanding what the true capacity is can lead to serious
problems. Many large applications with less than optimal
instruction mix, such as Microsoft’s SQL Server database,
recommend disabling hyper-threading because the small
gain from the limited increased parallelism isn’t worth the
confusion caused by significantly overstated potential ca-
pacity.

Because of the accuracy of measurements problem the
capacity planner has a choice between two unpleasant op-
tions: using erroneous measurements or doing without
measurements. Neither of these options is particularly use-
ful and it is not readily apparent which one is the better
choice. What complicates understanding of this problem is
that the magnitude of the inaccuracies varies significantly

The Myth of Precision Planning CMG07 Session 556, December 6, 2007

 7

across platforms. The IBM mainframe environment is much
more mature and has resolved many of these problems but
the Windows and Unix environments are much more prob-
lematic because of the number of hardware and software
vendors involved. The long-term solution lies in operating
systems and other measurement utilities using standardized
implementations of new processor virtualization-specific
features, once the systems designers implement those proc-
essors and the buying public becomes willing to pay for
them.

The impact of this inhibitor on capacity planning is
that application and resource measurements are less reliable
so any projections must include compensation for the in-
creased variability, which usually means including addi-
tional capacity.
3.3 Lack of Application Parallelism

It is generally accepted that designing a multi-tasking
application is significantly more difficult than writing a sin-
gle program. How well the application design uses available
parallelism has a direct bearing on how well it uses re-
sources in a parallel environment. Most mainframe capacity
planners can relate a story regarding the upgrading of a sys-
tem from a uni-processor to an SMP system and seeing
minimal, or even negative, improvement in transaction re-
sponse times. The reason for this is that the common trans-
action environment was designed as a single-threaded
process, which means that it could not use the additional
capacity. The negative impact to response times was caused
by the increased communication and synchronization delays
between the processors even when the application could
only use one at a time. How the application uses parallel
resources is extremely difficult to determine and requires a
deep understanding of the applications involved and some
amount of empirical testing. Some general assessment may
be possible by measuring the underlying programming
model, such as the “dwarfs” discussed in (Asanovic, et al.
2006, p. 7-19) or by use of compiler optimizations. (Asano-
vic, et al. 2006, p. 34-37) Other programming models at a
higher level of abstraction, such as Microsoft .NET Web
Services, can also be used. “A programming model must
allow the programmer to balance the competing goals of
productivity and implementation efficiency. Implementation
efficiency is always an important goal when parallelizing an
application, as programs with limited performance needs
can always be run sequentially.” (Asanovic, et al. 2006, p.
31) Therefore, a common solution is to design the applica-
tion as many smaller components and let the operating sys-
tem provide the parallelism rather than the application
design. Unfortunately, these issues apply to the operating
system as well and the degree to which the operating system
takes advantage of parallel resources varies between ven-
dors and even versions.

The impact of this inhibitor on capacity planning is
that applications may not scale well on newer larger systems
because they cannot take advantage of the increased, but
more parallel, capacity. Plans will require additional capac-

ity any time there is an increase in system parallelism in
case the application cannot use it effectively.
3.4 Benchmark Mismatch

Benchmarks are applications that can be executed un-
der controlled circumstances and are repeatable so that re-
sults can be compared. Benchmarks are designed to mimic a
particular type of processing but when the application de-
sign doesn’t match the benchmarks used to define the ca-
pacity units of the resources (SpecINT, TPC, MIPS, etc.)
then the application cannot ever achieve full capacity use. It
is extremely difficult to determine which benchmark an
application most closely matches and that analysis should
be redone for every release of the application. In addition,
multiple applications, or even components of one applica-
tion, on a single system may have vastly different character-
istics so that it is impossible to match to a single
benchmark. While this type of analysis can be done for a
few important applications or systems, it is not practical for
hundreds of systems in a large enterprise and trying to man-
age such a large environment with different capacity units
for each system and/or application would likely be cost and
effort prohibitive.

The impact of this inhibitor on capacity planning is
that the understanding of how an application will perform
on a new system becomes more approximate. If an applica-
tion (not including the operating system overhead) currently
uses 90% of a 150 SpecINT rated system then the replace-
ment system would need to be a 186 SpecINT rated system
to get the application utilization down to 70%. However,
because of the Benchmark Mismatch inhibitor the applica-
tion could actually use more or less but without knowing
which a planner would need to be conservative by recom-
mending a larger system (how much larger would depend
on the risk sensitivity of the given application).
3.5 Hidden Resources

Hidden resources are those resources that can signifi-
cantly impact the performance of a system or application
but are hidden by some form of virtualization so they cannot
be directly measured. Compensating for the hidden nature
of these resources can be extremely complex and requires a
much deeper understanding of how the resources are meas-
ured.

The impact of this inhibitor on capacity planning is
that critical resources are not visible in performance and
usage measurements to explain the variability in application
performance.
3.5.1 Instruction Level Parallelism

Instruction Level Parallelism (ILP) is the set of tech-
niques implemented inside the processor chip to increase
the number of instructions completed per second. Most
processor manufacturers do not disclose many of the details
of these techniques let alone expose measurements of them.
Many of the Thread-Internal and Core-Internal enhancing
techniques are specific to ILP because they overlay the dif-

The Myth of Precision Planning CMG07 Session 556, December 6, 2007

 8

ference stages of instruction execution. What is not obvious
is that while a processor may appear “busy” executing an
instruction it may in fact be waiting for some pipeline stall
condition to clear. The length of that delay is time that the
processor could have been doing productive work if the mix
or order of instructions had been different. Operating sys-
tems don’t capture this time even if the processor should
provide some way to access the measurement of it. This
condition is exacerbated by techniques like hyperthreading
because it relies on sharing some common transistor logic
between two “processors” but no measurements are pro-
vided as to when the parallel logic units are saturated and
the serialization through the common units becomes the
limit to instruction execution. Because of the sharing of the
common logic units it may not be even theoretically possi-
ble to get 100% utilization from both processors and, to
make the situation worse, the maximum utilization of each
of the virtualized processors in a hyperthreaded chip is de-
pendent not only on the workloads using them but also on
the timing of how the instructions get interleaved. A less
than optimal instruction mix, which is highly likely, will
mean that the maximum utilization will vary from one proc-
essor to the next, from one minute to the next.

The “ILP Wall” means that newer processor designs
will likely incorporate evolutionary, rather than revolution-
ary, changes but some processors are already on the market
use radically different techniques. For example, the early
64-bit Mecerd processor from Intel was an implementation
of a VLIW (Very Long Instruction Word) architecture. It
was followed by the Intel Itanium that uses a variation of
VLIW called EPIC (Explicitly Parallel Instruction Comput-
ing). Both VLIW and EPIC rely on the compiler to pack
multiple operations into each instruction word, ideally one
operation for each execution unit. If a valid instruction isn’t
available then a NOP (no-operation) instruction is used
which causes effects similar to a pipeline stall. While these
approaches can significantly increase performance under the
right conditions they are very dependent on the skills of the
complier designers as well as those of the application de-
velopers.

The impact of this inhibitor on capacity planning is
that there is no longer a clear upper bound to the capacity of
the system. At best the maximum capacity of a processor,
measured as completed instructions per second, will vary
around some average that will be application workload de-
pendent. At worst the maximum capacity of a processor will
vary widely and erratically depending on the timing and mix
of several workloads. This means that a low priority process
on one of the processors of a hyperthreaded processor pair
can significantly impact the performance of a higher priority
process on the other processor of the pair. Additional capac-
ity will be required to compensate for the variability of both
the measurements of usage and the upper limit of what can
be actually be used.

3.5.2 Memory Access
The “Memory Wall” is no longer about the ability to

implement very large amounts of memory but about how
long it takes to access the installed memory. How many
processor cycles per byte (average and peak) as opposed to
how many bytes are accessed. Chip manufactures are in-
creasing both processor speeds and the number of transis-
tors on the chip. The amount of on-chip memory will also
increase because that is one of the easiest way to use addi-
tional transistors and it also keeps access times somewhat in
line with the processor speed. If that memory is used as
cache then the cache coherency problems are compounded
but if it used as main memory then the NUMA latency prob-
lems increase. Therefore, by attempting to solve one aspect
of the “Memory Wall” problem another aspect is exacer-
bated. L1/L2 cache-coherency (maintaining synchronization
between levels of cache) can significantly reduce the gains
from increasing the size of the additional on-chip memory.
(Asanovic, et al. 2006, p. 27)

The impact of this inhibitor on capacity planning is
that applications may not exhibit a linear relationship to
processor increases because memory access constricts the
flow of program instructions. A processor capacity increase
that appears to be a large enough to meet the future needs of
an application may not because memory access delays elon-
gate application response times. Additional processor
capacity may be required to compensate for the effects of
this inhibitor but because the extent of the delays is not
measurable the additional capacity will have to be ap-
proximated. 3.5.3 Remote Access

Distributed application and operating system designs
can mask the usage of remote resources or services. When
access time to remote resources varies over time or because
of dynamic changes in the configuration then it may be im-
possible to understand what the full capacity of the re-
sources truly is.

The impact of this inhibitor on capacity planning is
that application performance is not dependent on just the
system where it runs but on the performance of other sys-
tems in the enterprise. However, the extent of that depend-
ency is not directly measurable. Additional system capacity
may not provide the expected application performance im-
provement because of critical path delays from poorly per-
forming remote systems.
3.5.4 Processor Interconnection

System components (processors, main memory, tim-
ers, support chips, I/O controllers, etc.) must be connected
for data to flow through a system. These interconnections in
general, and specifically between processors, can be a limit-
ing factor as processor speeds increase. In the early days of
microprocessors the interconnect latency across a relatively
simplistic system bus was more that adequate. However,
processor clock rates now exceed three gigahertz and even
more sophisticated interconnections (high speed busses,
cross-bar switches and advanced interconnections like Hy-

The Myth of Precision Planning CMG07 Session 556, December 6, 2007

 9

perTransport; http://www.hypertransport.org/) introduce
significant latency. As processor designs change from sin-
gle-core to “many-core” interprocessor communication will
become more asymmetric as the relative cost (increased
latency and reduced bandwidth) of going off-chip increases.
(Asanovic, et al. 2006, p. 27)

The impact of this inhibitor on capacity planning is
that, as the numbers of processors increase, the capacity
usable by applications may not scale at the same rate as
overall system size. Additional capacity may be required to
compensate for the increased communication between proc-
essors, especially if the applications are designed using par-
allelism to take advantage of multiple processors. Such
increased parallelism will increase communication delays
due to memory sharing between application components.
3.5.5 Asymmetric Processors

A system has asymmetric processors when all of the
installed processors are not exactly alike and interchange-
able. A system is usually defined by the general purpose
processors that implement a specific instruction architecture
and the special, or asymmetric processors, use a different set
of instructions. A few systems allow mixing processors with
the same instruction architecture but different features. For
example, the HP Tandem Non-Stop supports two different
processor clock speeds. When some processors have a to-
tally different instruction architecture they are usually not
exposed directly as system processors but are used through
operating system functions (such as graphics or I/O proces-
sors) or with extended instructions (such as floating-point
processors like the Intel 80287 which added specific in-
structions to the 80286 general purpose processor). A more
complex example is the use of a special purpose processor
integrated into a network interface card to offload most of
the processing for the TCP/IP protocol stack. This network
card, called a TOE NIC (TCP Offload Engine Network In-
terface Card), requires changes to the implemented network
software in the operating system or to the application to use
the alternate protocol stack interface. Without one of those
changes there is no improvement when a TOE NIC is in-
stalled but it still costs more to purchase and power.

The impact of this inhibitor on capacity planning is
that application performance can vary much more than ex-
pected from one system to another because the extent to
which the application uses the special purpose processors is
not known. Indeed, most systems do not provide any exter-
nal measurements of how such processors are used, let
alone which processes are using them. Most system meas-
urements use some form of averages which will mask dif-
ferences between visible processors (such as when clock
speeds are not the same) or simply ignore the processing
done by the special purpose processors, which understate
the resources needed by the application. Often system ven-
dors will change the implementation of special processors
without providing substantive details. In extreme cases
some features may be implemented in software unless the
hardware feature is purchased (at additional cost, of course).

Because of this uncertainty, performance tests on one sys-
tem cannot be used to predict performance on a different
system and capacity planning must be based on the assump-
tion that the application will not get any benefit from the
special processors. This assumption can lead to over provi-
sioning when special processors are available and the appli-
cation actually does utilize them.
3.5.6 Control Structure Access

Control structures are structured memory areas that are
used by an operating system or an application to control
behavior. As a greatly oversimplified example, an operating
system could use an array to keep track of the running proc-
ess where each element has a place for the process identi-
fier, the last program counter, register values to save, the
priority, the user, etc. Applications also use control struc-
tures, especially when they are multi-tasking. How the op-
erating system and application components implement
mutual exclusion (shared resource or producer/consumer)
when accessing the structures, and the resulting delays
caused by waiting for access, has a significant impact on the
perceived capacity of a system. The “hidden resource” here
is parallelism, which is reduced as more components con-
tend for the control structures and more work is serialized.
A single stand-alone component would not be delayed so
that is 100% capacity. Mitigations include the traditional
techniques to reduce the MP effect plus newer techniques
such as transactional memory (Asanovic, et al. 2006, p. 28)
and full-empty bits in memory (Asanovic, et al. 2006, p.
28).

The impact of this inhibitor on capacity planning is to
change how workload characterization is viewed. The stan-
dard assumption is that the application workload should
include those processes that are directly involved in applica-
tion processing so that non-volume related processes are not
increased in the planning projections. However, that as-
sumption no longer applies because increased application
volume can increase synchronization delays. Because con-
trol structure access delays are not easily measured it is al-
most impossible to determine when they will become the
dominate component to response time. Most likely they will
not increase in the same proportion as the application
growth so additional capacity will be required as systems
get larger and more complex to compensate for the in-
creased variability in system overhead.
3.5.7 Portability

Portability can be viewed as a form of virtualization
because it masks the actual underlying hardware and soft-
ware by defining an abstract environment for the application
that can be implemented across multiple configurations.
Techniques to increase portability tend to generalize the
underlying hardware which disallows the use of specific
capacity and performance improving features. (Asanovic, et
al. 2006, p. 37) Portability techniques rely on the skill of
programmers and require both political and technical trade-
offs among development costs, implementation costs and

The Myth of Precision Planning CMG07 Session 556, December 6, 2007

 10

performance. One technique to mitigate the problems with
portability that shows promise is the use of autotuners.
Autotuners are benchmark type utilities that run repeated
tests while changing configuration parameters to discover
the optimal library implementations for each target envi-
ronment. This allows the application to be moved without
being changed but still use specific features on each system.
While promising for complex single system hardware, no
successful autotuners exist for parallel systems. (Asanovic,
et al. 2006, p. 38)

The impact of this inhibitor on capacity planning is
that application performance will scale more slowly than
system performance because the application does not use
the advanced features of a newer system. This relationship
is not easily measured so when moving an application to
another system additional capacity should be planned to
allow for this inhibitor but the end result may be an under-
utilized system.
3.6 Hidden Consumers

Hidden consumers are components, software or hard-
ware, which use a resource in such a way that is it not easy,
or even possible, to measure that usage. Hidden consumers
reduce the available capacity of a resource in such a way
that the reduction is not captured.
3.6.1 Operating system features

Some new operating systems are trying to address per-
ceived usability issues with background processes (defrag,
indexing, virus scanning, etc.) that are done as part of the
operating system idle loop. The problem this creates is that
they are excluded from the operating system computations
of system busy because they viewed as only consuming a
resource that would not have been used anyway. Even
though use of the processor can be discounted, the use of
other resources, such as power, memory, memory access,
cache or I/O, is not considered. If the operating system
bases its decisions on processor usage then these other re-
sources can be overcommitted because processor usage is
understated but the other resources are still being consumed.

File system features (RAID, encryption, compression,
etc.) can also have an impact because their use is not con-
trolled by the application. In fact, how they are configured
may not be exposed to the application or captured in any
measurement data. Sudden changes in capacity or resource
usage could be a result of a change to a configurable feature
rather than an increase in application volume or installation
of additional resources.

The impact of this inhibitor on capacity planning is
that detailed configuration changes should be tracked, but
seldom are, and correlated with changes in capacity and
resource usage. Without understanding how such configura-
tion changes affect capacity and usage, the planner cannot
make meaningful predictions. One alternative is to assume
measurements reflect enabled features and risk performance
failure if that’s not true and the features are later enabled.
The other alternative is to assume measurements reflect

disabled features and risk underutilizing resources if that’s
not true and the features a later disabled. In either case, the
business trade-off between value of using such features and
their impact on capacity is complex and often very political.
3.6.2 Virtualization Implementation

The key concept with system level virtualization is that
the underlying resources are shared in a way that increased
parallelism. In other words, two or more systems appear to
be using the same physical hardware at the same time. This
is a very complex topic, that cannot be covered adequately
here, and this statement by Michael Salsburg, et al. provides
some insight into those complexities:

For example, what is the basic overhead of run-
ning a hypervisor on which the OS images
dwell? How does this overhead change as a
function of the number of virtual machines and
physical CPUs? Can we accurately predict the
effects of queueing both at the physical and vir-
tual CPU levels? What is the impact of I/O ac-
tivity? How about the impact of allocating
specific quanta of CPU cycles to each machine?
How is performance affected by the selection of
a specific virtual technology?
(Salsburg 2006)
The trick to successful virtualization, regardless of the

techniques used, is to maximize the use of resources without
negatively impacting application performance. Virtualiza-
tion raises questions about the overhead of the hypervisor
(virtualization control software), clock synchronization and
granularity, processor dispatch granularity (does the hyper-
visor dispatch processors individual or does a guest operat-
ing system wait until there are as many physical processors
available as defined logic processor units for that guest),
and the impact of interrupt delays on the guest operating
systems. All of these, and other, topics act as hidden con-
sumers of resources because they are usually not seen and
measured by the guest operating systems and the hypervisor
does not provide detailed enough measurements to under-
stand their impact at the workload and process level.

The impact of this inhibitor on capacity planning is
that the environment becomes much more complex and
much more dynamic. Planning at the resource level be-
comes impossible for two reasons. First, the resource usage
measurements are imprecise and unreliable at best and may
even be incorrect in some cases. Second, what drives re-
source consumption is no longer just the application busi-
ness drivers but everything running on all of the other guest
operating systems sharing the same physical resources. The
lowest priority work in a guest with a large share of the
physical resources can easily run before, or even instead of,
the highest priority work in another guest.

4. Far Reaching Effects
The accumulation of all of the Capacity Inhibitors has

long-term and far reaching effects on capacity planning.
Capacity planning in the Age of Virtual Parallelism is like

The Myth of Precision Planning CMG07 Session 556, December 6, 2007

 11

peeling back an onion. The planner can continually go to
yet another level of detail whenever more precision is
needed but at some point the cost will outweigh the benefit.
Resources, both human and computer, can be expended to
gather the required information and measurements for any
sufficiently important system or application. The problem
comes when trying to apply that same precision across all
servers and applications in a large environment. Capacity
planning should always be about the business relationship
but now, in addition to defining the relationship between the
business and the technology, it must also define the rela-
tionship between the business and the planning process it-
self. Planning must change focus from managing resources
to meeting application business objectives and it must do so
with introspection, knowing that the planning process can
easily become a significant cost. Like the old engineering
adage, sometimes close is good enough.
4.1 Workload Characterization

Workload characterization used to be a relatively
straight forward matter of assigning processes or users or
transactions or whatever to workload groups. But now, as
more and more resources are shared in ever increasingly
complex ways, those assignments are not so simple. Virtual-
ization at so many different levels makes it almost impossi-
ble to assign the use of a resource to a single application
workload. The standard apportionment techniques (Norton
2004) for approximating how much usage of a resource
should be attributed to an application are no longer adequate
because they rely of either precise measurements or a con-
sistent ratio of usage over time. Precise measurements are
lost for all of the reasons already discussed and the very
nature of virtualization is to allocate resources as needed,
certainly not in the same ratio from one time interval to the
next.
4.2 Building Models

While capacity planning involves much more than
building models, the ability to accurately represent a system
or application with an abstract model is still a key tool in the
planning process. The commercial and Open Source model-
ing tools available today are all quite capable of modeling
complex virtualized environments. The questions are: What
is the expected granularity and precision of the results? and
What is the required effort to get those results?
4.2.1 Service Time Calculations

Models use abstraction to represent the time something
takes at each stage of a process. Each stage is a server or
service center and the time is the corresponding service
time. Because the service center is an abstraction of a more
complex process, the service time is also an abstraction.
Different types of models use a variety of techniques to
achieve a sufficient level of abstraction to make the model
practical to solve and yet have a sufficient level of detail to
give the results meaning. As shown in the previous discus-
sion of Enhancing Techniques, there is almost always more
complexity at the next level down. While theoretically pos-

sible to build a model of an entire environment, from the
behavior of the application to the way the network passes
data to the operating system services to the management of
cache to the pipeline of the microprocessor to the specula-
tive execution of the underlying micro-op instructions, such
a model would most likely take forever to build and some-
what longer to run. The success of a model lays in the abil-
ity to cost effectively approximate the behavior at each
service center while producing results in enough detail to
allow for meaningful predictions.

How do the Capacity Inhibitors affect this abstraction
of service time? It may be overstated (longer) because of
reduced clock speed at lower utilizations (Processor Throt-
tling). It may not be measurable within the needed precision
for the desired results (Accuracy of Measurements). It may
be understated because the application cannot use all of the
components that have been abstracted into the service center
(Lack of Application Parallelism). The capacity of the ser-
vice center may be either overstated or understated because
the application is significantly different from what was used
to determine the capacity (Benchmark Mismatch). It may be
either overstated or understated because the instruction mix
in the application doesn’t match the processor designer’s
assumptions (Instruction Level Parallelism). It may be un-
derstated because future transaction volumes don’t account
for the increased latency when the system is expanded and
remote, instead of local, resources are used (Memory Ac-
cess and Remote Access). It may be understated for meas-
urements at lower utilization (Processor Interconnection). It
may be understated because it doesn’t account for an entire
class of resources that could not be available on the target
system (Asymmetric Processors). It may be understated
because mutual exclusion delays increase non-linearly as
the service center utilization increases (Control Structure
Access). It may be either overstated or understated because
the new system is configured differently (Portability). It
may be understated because of interference from other
workloads that will not grow at the same rate as the applica-
tion under investigation (Hidden Consumers).

The truly confounding dilemma is that some condi-
tions cause overstatement of service time to increase as ser-
vice center utilization increases and others cause it to
increase as service center utilization decreases.
4.2.2 Uniformity

Many of the assumptions made when building a model
are about how work is distributed to the service centers. For
example, the processors in an SMP system (tightly-coupled
processors) can be modeled as a single server where the
service time is adjusted for the number of processors and
the interprocessor communication (Menascé 1994, p. 263-
4). Underlying this technique is the assumption the applica-
tion can actually use all of the processors. Several of the
Enhancing Techniques (i.e., hyperthreading) change the
validity of this assumption and those changes can vary dy-
namically as systems load varies. The ability to spread a
given workload across all available similar resources may

The Myth of Precision Planning CMG07 Session 556, December 6, 2007

 12

not always be a good assumption. Loosing the ability to use
such simplifying assumptions will increase the time to both
build and to run a model.

5. Conclusion
 Virtualization is the current hot solution but along

with it comes a host of other problems. Virtualization is not
one simple technique but many techniques to increase paral-
lelism, implemented at many different levels. Sometimes
these techniques complement each other and sometimes
they work against each other. How these interactions impact
the planning process is far too complex to predict. This pa-
per explored many of the techniques used to virtualize and
parallelize resources and it discussed some of the impacts of
each technique on planning. The final conclusion isn’t a
definite answer about how to mitigate these impacts but
rather a heightened awareness of some of the things that can
go wrong. The very nature of a discussion about precision
raises the issue of the precision of the discussion. Many
details were left out or glossed over because of limited
space but also because the details aren’t the real issue. All
of the topics discussed are in very rapidly changing areas of
computer science and any specific details would be outdated
long before publication. On the other hand, few organiza-
tions have only the latest and greatest installed. A mix of
old and new technology means that there is no single an-
swer to any of the issues raised here. Hopefully the explora-
tion started here will grow into a discussion that
encompasses many different areas and disciplines. The
Berkeley study (Asanovic, et al. 2006) is very interesting
because the contributors are from so many different areas
and different universities.

The final thought is on the future of capacity planning.
Given the complexities, uncertainties and variabilities dis-
cussed here, what’s a planner to do? The evidence is mount-
ing that planning resources will become harder and less
precise as more and more of these techniques, and the ones
to follow, are implemented. What remains is to go back to
the basics of what capacity planning should be about any-
way, understanding the needs of the business. Planners must
now, even more than ever, think in terms of identifying and
reducing bottlenecks that prevent applications from achiev-
ing the business objectives. Efficient use of resources isn’t
the issue because it’s almost impossible to understand. Plan-
ning should take a holistic view that balances costs, techni-
cal, financial and human, against the overall benefits with
the understanding that there will always be localized
inefficiencies that inhibit achieving global optimization.

6. References

Abrash, Michael. 2001. Graphics Programming Black Book. Chapter 21:
Unleashing the Pentium's V-pipe. Byte.com:
http://www.byte.com/abrash/chapters/

Asanovic, Krste, Ras Bodik, and Bryan Christopher Catanzaro, et al.,
2006. The Landscape of Parallel Computing Research: A View
from Berkeley, Technical Report No. UCB/EECS-2006-183,
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-
2006-183.pdf

Greene, Kate, 2007. The Promise of Personal Supercomputers, MIT Tech-
nology Review, February 23, 2007,
http://www.technologyreview.com/printer_friendly_article.aspx
?id=18219

Gunther, Neil, 1996. The MP Effect: Parallel Processing in Pictures. In
Computer Measurement Group, Proceedings: San Diego, Cali-
fornia: CMG, Inc.
http://www.perfdynamics.com/Papers/njgCMG96.pdf

Gochman, Simcha, Avi Mendelson, Alon Naveh and Efraim Rotem. 2006.
Introduction to Intel Core Duo Processor Architecture. In Intel
Technology Journal, V10 N2:89-97.Intel:
http://www.intel.com/technology/itj/2006/volume10issue02

Hennessy, John L., and David A.Patterson, 2007. Computer Architecture, A
Quantitative Approach. San Francisco, CA: Morgan Kaufmann
Publishers.

Menascé, D. and A. Rao, 1996. Performance Prediction of Parallel Appli-
cations on Networks of Workstations, In Computer Measure-
ment Group Proceedings: San Diego, CA: CMG, Inc
http://cs.gmu.edu/~menasce/papers/CMG96.pdf

Menascé, D., V. Almeida, and L. Dowdy. 1994. Capacity Planning and
Performance Modeling: from mainframes to client-server sys-
tems. Englewood Cliffs, New Jersey: Prentice Hall.

Norton, Tim R. 2004. Workload Information Tutorial: Mapping Businesses
and Applications to Servers and Processes. Half day presenta-
tion at the Fifth International Workshop on Software and Per-
formance (WOSP 2005), July 11-14, 2005, Palma de Mallorca,
Illes Balears, Spain.

Salsburg, Michael, Peter Karnazes, and Bill Maimone, 2006. It May be
Virtual … but the Overhead is Not. In Computer Measurement
Group Proceedings: Reno, NV: CMG, Inc

Tummala, Rao R., 2006. Moore's Law Meets Its Match, IEEE Spectrum
Online, June 2006, http://www.spectrum.ieee.org/jun06/3649

