Simalytic Modeling: The Best of Both Worlds

Tim R. Norton
Candidate, Doctor of Computer Science
Colorado Technical University
Colorado Springs, CO
http://www.simalytic.com
Overview

- Introduction
- Background
- Simalytic Modeling
 - Foundation
 - Response Time Comparison
- Conclusion
Introduction

Applications
- Once Batch Systems on a Single Computer
- Now Multi-Platform
 - On-Line Transaction Processing
 - Client/Server Systems
 - GUI (Graphical User Interface) Front-Ends
 - PWS’s (Programmable Work-Stations)
 - Departmental Servers and Mainframe Repositories
Introduction

◆ Applications
 ○ Require Features and Services
 ■ Different Types of Computers (Mainframe, Open Systems, Desktop)
 ■ Different Operating Systems (MVS, Unix, OS/2, Windows, etc.)
 ■ Variety of Communication Network Techniques (RPC, DCE, NFS, FTP, SNA, APPN, etc.)
Introduction

- Model Application Requirements at Enterprise Level
- Intersection of:
 - Capacity Planning
 - Client / Server
 - Commercial Tools
 - Hybrid Modeling
Capacity Planning

Hybrid Modeling

Client/Server

Capacity Planning

Commercial Tools
Capacity Planning

- Capacity Measured by Business Performance Objectives
 - Decisions About Resource Requirements Based Predicting Future Application Performance Using Business Goals and Expectations
 - What Do We Have to Buy and When Do We Have to Buy It to Make Sure That the Business Applications Perform at the Level Required to Insure the Business Succeeds?
Capacity Planning

- **Past**
 - Processor Utilization
 - Overnight Batch Window

- **Today**
 - Operating Systems
 - The Platforms
 - The Clients
 - The Servers
 - The Networks
 - The Transaction Systems
 - Relationships

- **Accuracy**
 - Benchmarks
 - Simulation Models
 - Queuing Models
 - Trends (Linear Projections)
 - Business Analysis (Rules-of-Thumb)

- **Complexity, Cost, Effort**
Capacity Planning

Objective
- Successful Middle Ground
 - Cost
 - Performance
- Application Performance Assessed Against the Business Objectives and Goals.
- Projected Business Volumes Modeled to Predict the Capacity Required to Meet Those Goals at Future Volumes
Client/Server

Hybrid Modeling

Client/Server

Capacity Planning

Commercial Tools
Centralized Environment

- Central processing
- Overnight
- Batch Orientated
- Data Entry
- Printed Reports
Decentralized Environment

- Overnight
- Data Entry
- Batch Orientated
- Printed Reports
- Downloaded Data
Client/Server

- Mix of Applications
- Different Systems
- Different User Interfaces
- Real-Time Interactions
- Inter-Dependent Workloads
An Enterprise Model

Server

Network

Clients

Reproduced with permission from Dr. Connie Smith, Performance Engineering Services.
Client/Server

◆ Sizing Client/Server Applications
 ○ Right Systems at Each Level
 ○ Insure Systems Are Right Size
 ○ Too Small - Application Fails
 ○ Too Big - Excessive Cost
Client/Server

◆ Modeling
 ◦ Systems Cannot Be Modeled Independently
 ◦ Transaction Arrival Rate for One System May Be Dependent on the Response Times of the Others

◆ Issues
 ■ Transactions to Several Servers
 ■ Synchronize Parallel Transactions
 ■ Wait for Response Before Sending the Next
Modeling Tools

Hybrid Modeling
Client/Server

Capacity Planning
Commercial Tools
Modeling Tools

- Platform-Centric Tools
- General Purpose Tools
- Different Problem Sets
Platform-Centric

- Single platform at a time
- Detailed information about the platform
 - Number and type of processors
 - Speed and transfer rate of disk devices
 - Level of the operating system.
- Easier to build
 - “Building blocks” defined
 - Relationships fully understood
Platform-Centric

- Only Environments Built Into the Tool
 - Define New Servers
 - New Server Performance Characteristics
 - But Not Dramatically Different from Supported Platform
- Data Collected from Running Systems
- Generally Analytic or Queuing Theory
General Purpose

- Features to Model Anything
- No “Built-in” Platform Understanding
- Libraries of Sub-Models
- Model More Than Just Hardware
General Purpose

- Requires Understand the Hardware
 - How Processors Communicate
 - Completing a Unit of Work
 - Build a Sub-Model
 - Determine a Delay Value
- Level of Granularity
 - Too General or Too Detailed
- Generally Simulation Techniques
Hybrid Modeling

Hybrid Modeling Client/Server

Capacity Planning Commercial Tools
Hybrid Modeling

- Combination of Techniques
 - Simulation
 - Analytic Queuing Theory

- Benefits
 - Complexity Reduction
 - Performance Improvement
 - Analysis Flexibility
Hybrid Modeling

- Need for Enterprise Modeling
 - Bridge Across Existing Techniques
 - End User View of an Enterprise Level Application
- Implemented with Submodels
 - Takes Advantage of Existing Models and Tools
Simalytic Approach

Hybrid Modeling Client/Server

Capacity Planning Commercial Tools
Simalytic Approach

“Simalytic” (Simulation/Analytic) Enterprise Modeling

- Hybrid Modeling Technique
- General Purpose Simulation Tool Framework
- Analytic Modeling Tool Nodes
- Existing Tools
- Predict Capacity Requirements
- Heterogeneous Computer Systems
- Enterprise Level Application Model
Simalytic Approach

- Key Differences - Simalytic vs Current
 - Applications at Enterprise Level
 - Mixes Different Tools and Techniques
 - Hardware at Node Level
 - Existing Tools and Techniques
 - Calculated Arrival Rate
 - Reduce the Time and Effort
 - Commercial Platform-Centric Tools
 - Existing Detailed Application Models
 - Reuse and Incorporate Existing Processes
Simulation Response Time Formula

Transform Function Using Queuing Theory Formula

\[T = \frac{S}{1 - \lambda S} \]

\(f(\lambda_i) \) Replaces \(T_i \) Server Time

Where \(T \) is the time, \(i \) is the Iteration and \(\lambda_i \) is Based on Interarrival Times

\[T = \frac{\sum_{i=1}^{n_i} f(\lambda_i)}{n_t} \]

where \(\lambda \) = arrivals per second as:

\[\lambda_i = \frac{b}{c_i - c_{i-1}} \]

where \(c \) = simulation clock value
and \(b \) = simulation clock ticks per second
Simple Enterprise Model

- **Order Entry**
 - Queries Shipping

- **Shipping Response**

 Time:
 - 1 Second When Arrivals < 3 / Minute
 - 2 Seconds When Arrivals > 3 Minute
Simple Enterprise Model

- Model of Order Entry System Alone
 - Shipping Load Has No Effect
- Simalytic Model Adjusts Service Time
 - Long (Shipping) Transactions
- Simalytic Model of Order Entry Application
 - Other Loads Can Impact Response Times
 - Also Impacts to Shipping Application
Load Dependent

Response Time

- Calculated Based on Interarrival Time Between Each Pair of Transactions

Simulation Clock (c_j)

t = transaction, a = arrival, d = departure, ir = interarrival time

Response Time

$0.0 \quad 0.5 \quad 1.0 \quad 1.5 \quad 2.0$

Relative Arrival Time (Seconds)

$0 \quad 50 \quad 100 \quad 150 \quad 200 \quad 250$

Transactions

© 1996 by Tim R. Norton
Model Analysis

◆ Assumptions
 ○ Constant Arrival Rate Increase
 ○ 30% of OE Transactions Access Shipping
 ○ Order Entry Response Time Goal < 1.7 Seconds
 ○ Shipping Response Time Goal < 10 Seconds
 ○ Analysis Scope of 18 Months

◆ Analysis Objectives
 ○ When Does OE System Fail to Meet Goal?
 ○ What Will Fix the Problem?
Real business problem shown by Simalytic model results of OE.

OE with S info
Shows influences from both

OE alone never exceeds goal

Order Entry
Shipping
OE RT Goal
3/min Arrival Rate
OE with S info
Arrival Rate
Model Analysis

- Independent Server Analysis
 - Shipping Problem Known and Acceptable
 - Order Entry Never Has a Problem

- Business Problem at Year End
 - Look for Seasonality in Arrival Rate
 - Shipping System Upgrade to Fix Order Entry Problem
Response Time Comparison

- Range of Arrival Rates for each Service Time
- Three Techniques
 - Simulation
 - Analytic Queuing Theory
 - Simalytic
- Similar Results
Conclusion
Conclusion

- Enterprise View of Applications
- Applications Relationships
 - Transaction Routing
 - Synchronization of Server Responses
 - Understanding and Documentation
Conclusion

- Combination of Techniques
 - Simulation and Analytic
 - Platform-Centric and General Purpose
- Predict Future Performance
- Client/Server Applications
- Reuse Existing Models
- Reduce Time and Effort
Questions