
Don’t Plan Capacity When You Should Predict Applications 1 CMG97 Session 443, December 10, 1997

Don’t Plan Capacity When You Should Predict Applications
Tim R. Norton

Doctoral Candidate
Colorado Technical University

CMG97 Session 443, December 10, 1997

As application designs incorporate client/server systems, either as new functions or as front-ends for legacy sys-
tems, the capacity planning challenges increase at a staggering rate. Changing from a single system to clients
and servers on different computer platforms would be hard enough, without the additional complexities of different
operating systems, databases and networks. The capacity planner needs to take an enterprise view of the appli-
cation and predict the performance from the user’s point-of-view. Planning the capacity of client/server applica-
tions requires an understanding of each of the systems and the inter-relationships between them.
The Simalytic™ (Simulation/Analytic) Modeling Technique1provides a modeling framework to connect the parts
of an application together, using the modeling tools already in place for the individual systems. This technique
uses a general purpose simulation tool as an underlying framework and the results of analytic platform-centric
modeling tools to represent individual nodes in an enterprise model of the application. How to construct a Sima-
lytic Model is discussed, including an example using an inexpensive general-purpose simulation tool, a simple
queuing theory tool and Visual Basic to implement the Simalytic Function that provides the bridge between them.

1SimalyticTM, Simalytic ModelingTM, Simalytic Modeling TechniqueTM, Simalytic Enterprise ModelingTM and Simalytic FunctionTM are trademarked by
Tim R. Norton. All other trademarked names and terms are the property of their respective owners.
 1997 Tim R. Norton. All rights reserved.
Permission is granted to publish this article in the 1997 Computer Measurement Group Conference Proceedings

1. Introduction
Today’s computing environment is changing at a

very rapid pace. New applications that once would
have been implemented on a single computer are now
multi-platform. What were once batch applications are
now on-line transaction processing client/server sys-
tems with GUI (graphical user interface) front-ends on
PWS’s (programmable work-stations) attached to de-
partmental servers and mainframe repositories. Com-
plex application designs utilize the features and
services of different types of computers (mainframe,
mid-range, desktop) running different operating sys-
tems (MVS, Unix, OS/2, Windows, etc.) connected by
a variety of communication network techniques (RPC,
DCE, NFS, FTP, SNA, APPN, etc.) (Hatheson 1995;
Wilson 1994).

As applications move into this new client/server
world, how do we select the right systems at each
level and, once selected, how do we insure those
systems are the right size? If any of them are too
small the whole application will fail. If any are too big,
the cost of running the application may exceed the
revenue it generates. Neither is a very attractive
situation.

Capacity planning has traditionally been focused
on determining if a given system has “enough capac-
ity” to service an application. Today, planning the ca-
pacity of large computer installations with multiple
systems requires an understanding of not only the op-
erating systems, the platforms, the clients, the serv-

ers, the networks, the transaction systems, etc., but
also the relationships between them. Once those rela-
tionships are defined and understood, the application’s
performance can be assessed against the business
objectives and goals. Projected business volumes are
then modeled to predict the capacity required to meet
those goals at future volumes. Instead of planning the
capacity of individual systems, the responsiveness of
the application needs to be predicted across the entire
enterprise. Only then can the true capacity require-
ments be identified.

There are many modeling tools and techniques
that address both performance and capacity for each
of the systems in today’s multi-platform environment
(Pooley 1995; Smith 1995). The Simalytic™
(Simulation/Analytic) Modeling Technique provides a
bridge across these existing tools to allow the con-
struction of an enterprise level application model that
takes advantage of models and tools already in place
for planning the capacity of each system. The advan-
tages of using the Simalytic Model Technique are:

• Rapid Analysis
• Spiral Methodology
• Reuse
• Distributed Model Development
• Applicable Tools

Rapid Analysis: A Simalytic application model can
be quickly constructed with minimal effort for each
node model. Analysis of the application using this high

Don’t Plan Capacity When You Should Predict Applications 2 CMG97 Session 443, December 10, 1997

level model allows additional effort to be applied only
to the nodes in the critical-path areas, saving time and
effort by avoiding areas with minimal impact on appli-
cation responsiveness.
Spiral Methodology: Simalytic Modeling provides a
mechanism to promote the exchange of information
between the users, the developers and the modelers.
As more information becomes available, the applica-
tion model is refined. Early assumptions can be re-
placed with the results from more sophisticated tools
as more details become available. This spiral ap-
proach allows modeling earlier in the design phase as
well as after implementation.
Reuse: Simalytic Modeling provides for the direct in-
corporation of existing tools and techniques into the
high level model. The investment in time, effort and
money expended for training on the tools used for ex-
isting system models is preserved. It is much easier to
get someone who has built a number of models of a
system, using a tool they are well trained on, to do
another model, than it is to start over in different tool.
Distributed Model Development: Simalytic Modeling
provides easy distribution of modeling activities to
multiple people or organizations. Because of the reuse
of existing modeling techniques, node models can
easily be “sub-contracted” to the modelers most fa-
miliar with those tools and systems.
Applicable Tools: The ability to use the most appli-
cable tool for each node of the Simalytic Model in-
creases both the speed (construction and execution)
and the accuracy of the application model. For exam-
ple, the network component of the application can be
assumed constant or modeled with greater detail if the
modeler determines that the network is a major com-
ponent of response time. If the simulation tool does
not provide the level of complexity needed, then a
specialized network modeling tool can be used to cre-
ate network nodes for the whole Simalytic Model or
just for a critical part of the network between two serv-
ers.

1.1 Major Topics Covered
• Section 2, Simalytic Modeling Review, is a general

review of Simalytic Modeling and the related back-
ground topics.

• Section 3, Steps to Build a Simalytic Model, is a
step-by-step description of how to implement a Si-
malytic Model for transaction based applications.

• Section 4, Simalytic Model Implementation, dis-
cusses the actual implementation of the relevant
steps from Section 3 using some inexpensive and
readily available tools.

• Section 5, Conclusion, discusses how Simalytic
Modeling applies to actual modeling situations and
the benefits of using the technique.

2. Simalytic Modeling Review
What is Simalytic Modeling? Simalytic™ Modeling

(from Simulation and Analytic) is a hybrid modeling
technique that uses a general purpose simulation
modeling tool as a underlying framework and the re-
sults of an analytic modeling tool to represent the in-
dividual nodes or systems. The problem addressed by
Simalytic Modeling is at the intersection of several
areas: capacity planning, modeling (both simulation
and queuing theory), client/server transaction proc-
essing systems, and commercial tools (both general
purpose and platform-centric). The goal of a Simalytic
Model is to predict the capacity requirements of an
application executing on heterogeneous computer
systems by creating an enterprise level application
model.

This section provides a general overview and re-
view of Simalytic Modeling. Additional detailed infor-
mation about Simalytic Modeling is available in other
papers published and presented by the author. A de-
tailed description of the technique and a discussion of
the industrial and environmental changes that pro-
vided the impetus for Simalytic Modeling are available
in (Norton 1996). Details of the mathematical founda-
tion and validation of the technique are available in
(Norton 1997a) and (Norton 1997b).

Before discussing Simalytic Modeling, it is impor-
tant to quickly review the background topics that sup-
port Simalytic Modeling. It is assumed that the reader
is somewhat familiar with each of these topics and the
review will provide for a common basis in the discus-
sion of the implementation. Additional information on
the following topics is available in the works men-
tioned above and in the references cited in those
works:

• General capacity planning.
• Transaction based applications.
• Client/Server environments.
• Modeling capacity projections.
• Modeling tools.
• Simalytic Modeling methodology.

2.1 Capacity Planning
The capacity of a system can be measured many

different ways, depending on the business the system
supports. Generally, the way a system is measured
centers around the performance of one or more of the
applications it supports. The system “has enough ca-
pacity” if everything is getting done when it is needed.
Capacity planning is making decisions about the re-
source requirements of a given computer system
based on the forecasting of future application per-
formance using the goals and expectations of the
business. What do we have to buy and when do we
have to buy it to make sure that the applications that

Don’t Plan Capacity When You Should Predict Applications 3 CMG97 Session 443, December 10, 1997

run the business perform at the level required to in-
sure that the business succeeds?

2.2 Transaction Based Applications
Although there are still many important batch ap-

plications, this discussion will center around transac-
tion based applications. Transaction processing sys-
tems, often referred to as OLTP (On-Line Transaction
Processing), allow the end-user to enter a relatively
small independent unit of work into the system and
receive some information as a response in near real-
time. Transactions include entering an order at a ter-
minal (business transaction), an SQL command
(database transaction), some keystrokes followed by a
carriage-return (interactive transaction)whatever is
meaningful from the end-user’s point-of-view. Trans-
actions can be counted to establish load (e.g. arrival
rate) and measured to establish performance (e.g.
response time). The responsiveness of the transac-
tions associated with an application determine if that
application meets the needs of the business. Pro-
jected business volumes are then modeled to predict
the capacity required to meet the business goals at
those volumes.

2.3 Client/Server Environments
When modeling application performance, which

techniques and products are chosen to implement the
application are of concern only to the extent that some
provide better modeling data than others (i.e. SMF,
RMF, CMF, etc.). The interrelationships between the
systems, however, must be fully understood. It is im-
portant to understand that any of the client applica-
tions on any of the PWS’s can, and eventually will,
send transactions to several of the legacy applications
to provide the end-user a screen of complete and in-
terrelated information.

Modeling in this environment is a challenge be-
cause each of the systems requires a different knowl-
edge base and expertise (Gunther 1995; Hatheson
1995). None of the systems can be modeled inde-
pendently because the transaction arrival rate for one
system may be dependent on the response times of
the others. Figure 1 An Enterprise Model shows a very
simplistic model for each of the major areas of a cli-
ent/server application and, although it only shows a
single server, the interdependence is evident. The
responsiveness of one part of the model (server, client
or network) will have an impact on the other two. Each
of the models in Figure 1 can be well defined, but
when taken as a whole, the complexity rises quickly as
additional servers and clients are included in the
model. Each server is often part of a design focused
on one application that seldom coordinates platform
selection with other applications. The use of different
data collection utilities and different modeling tools on
each of the different platforms greatly increases the
complexity of modeling the application.

2.4 Modeling Capacity Projections
The use of models to assess and predict the per-

formance of computer systems is not new. Capacity
planning has always relied to some extent on model-
ing because of the need to predict future require-
ments. A capacity planner can analyze the workloads
and make predictions based on experience or simple
trending. Models can also be constructed to under-
stand how an application functions without any inten-
tion to predict future performance. The area of interest
here is the intersection of the two fields; models used
to predict capacity requirements based on perform-
ance expectations.
2.4.1 Response Time Modeling

The key to the capacity planning methodology dis-
cussed so far is the ability to predict the performance
of a future workload, given a desired system configu-
ration. As applications move towards being transaction
based, the definition of application performance be-
comes centered around transaction response time.
Modeling the response time then becomes crucial to
the ability to predict the future performance of that
application.

There are two basic modeling techniques used for
computer performance modeling: simulation and ana-
lytic queuing theory (Kobayashi 1981; Menascé, Al-
meida, and Dowdy 1994). Either of these techniques
will build a model that represents the major compo-
nents of the computer system to be modeled. A third
technique, hybrid modeling, is the combination of both
simulation and analytic techniques in a single model
(Kobayashi 1981).

2.5 Modeling Tools
In addition to the choice between analytic and

simulation tools, the capacity planner or performance
analyst has the choice between platform-centric and
general purpose tools. The basic difference between

Server

Clients

Network

Reproduced with permission from Dr. Connie Smith,
Performance Engineering Services.

Server
Q CPU

Disk1

Disk2

Network

CPU DiskClient
Q

Delay

User
Delay

Figure 1 An Enterprise Model

Don’t Plan Capacity When You Should Predict Applications 4 CMG97 Session 443, December 10, 1997

these two groups is which problem set the tools were
designed to address.
2.5.1 Platform-Centric

Platform-centric means the tool contains detailed
information about the platform, but does not allow
more than one platform to be modeled at a time. For
example, they would include information about the
number and type of processors for each system in the
model (e.g. an IBM 982 running MVS 5.2 with EMC
Symmetrix 5500 disk subsystems). Platform-centric
models are generally easier to build because they are
made of “building blocks” already defined to the tools,
and the relationships between them are fully under-
stood by the model. However, these tools cannot be
used to model an environment not built into the tool.
Although many platform-centric tools allow the user to
define new servers with new performance characteris-
tics, they generally do not provide large libraries of
device and system definitions dramatically different
from the supported platform. Platform-centric tools are
generally implemented using analytic, or queuing the-
ory, modeling techniques and process performance
and configuration data collected from existing running
systems.
2.5.2 General Purpose

General purpose means the tool contains the fea-
tures to allow the user to model almost anything, but
with little or no “built-in” understanding of any given
computer platform. These tools are used to model
more than just the hardware, including application de-
sign, traffic flow and communications protocols. Sys-
tem components are modeled using either a sub-
model to implement the underlying architecture or a
pre-determined delay value. Although many general
purpose tools provide libraries of sub-models for a
variety of systems and devices, they generally do not
provide the required level of granularity, being either
too general or too detailed for the situation. Building
the relationships between the submodels is part of the
overall model construction and may require an in-
depth understanding of all of the submodels used,
some of which are provided by the tool vendor in ex-
ecutable–only formats. General purpose tools are
generally implemented using simulation modeling
techniques.

2.6 Simalytic Modeling Methodology
There are two key differences between the existing

modeling tools and the Simalytic Modeling methodol-
ogy. The first is the ability to use the results from not
only a different tool, but a different modeling tech-
nique altogether, as a submodel within an enterprise
model. The second is the ability to use the results
from tools or techniques already being used to model
individual nodes in the system. These differences re-
duce the time and effort to build an enterprise level
model of an application by using the results from

commercially available platform-centric tools or exist-
ing detailed application models.

Simalytic Modeling brings together existing per-
formance models (usually platform-centric analytic
models) and application information (best expressed
as simulations). The queuing theory models rely on
averages, such as average response time, average
service time and average arrival rate. These models
are generally more efficient to execute than simulation
models, but, because of the use of averages, their
accuracy generally decreases as the data collection
interval increases due to variability in the data. Sima-
lytic Modeling allows the application to be modeled
over longer periods of time to understand the applica-
tion dynamics without increasing the error due to
greater variation in the data items used for the above
averages.

When using commercial queuing theory tools, it is
generally understood that shorter intervals (the time
period for which measurement data was collected to
use in building a model) usually produce better model
results because there is less variation in the meas-
urement data. Trace-driven models are the most
common in capacity planning and performance mod-
eling because of the focus on existing systems. As an
additional benefit, the trace data provides the transac-
tion arrival distributions, which is often a major issue
in model construction.

Simalytic Modeling is based on a hybrid technique
that allows the models to use the best features of each
tool. Submodels allow some part of the model to be
replaced with a different model, using a different tech-
nique, as long as it provides appropriate functionality
and results; similar to the FESC (flow-equivalent
service center) decomposition technique discussed in
(Menascé, Almeida, and Dowdy 1994). A valid model
(proven to produce accurate predictions) must exist
for each system or node to be included in the applica-
tion enterprise model. The application details must be
understood, and consistently defined, at the enterprise
level.
2.6.1 Methodology Process

An enterprise level model is constructed by starting
with a very high level simulation model of the applica-
tion, where each system is a single server. Then, in-
stead of using a pre-defined service time, each server
uses a transform function, the Simalytic Function, that
maps the transaction arrival rates to service times. As
the simulation model is run, the service time dynami-
cally adjusts at each node depending on the combina-
tion of transaction arrival rate for the application and
the other work at the node.

3. Steps to Build a Simalytic Model
As with any modeling effort, creating a Simalytic

Model requires more than just putting the pieces to-
gether in some modeling tool. A substantial amount of
information is required about the applications and

Don’t Plan Capacity When You Should Predict Applications 5 CMG97 Session 443, December 10, 1997

systems involved. Although this section presents all of
the steps to build a Simalytic Model, a full discussion
of some of them is beyond the scope of this paper.
The most critical step, Workload Analysis, is a very
complex and involved process, and only some of the
issues involved, those that relate directly to the con-
struction of a Simalytic Model, are discussed here.
Other areas, such as calibration techniques for queu-
ing theory tools and features of simulations tools are
assumed to be covered in the training and documen-
tation for the specific tools

The major phases to creating a Simalytic Model
are:

1. Workload Analysis.
2. Node Models.
3. Simulation Model.
4. Simalytic Model.
5. Model Analysis.

Each of these phases is discussed in detail in the fol-
lowing sections. This list is not meant to be compre-
hensive for all of the phases. Once the Simalytic
Model has been created, it must be used productively.
Generating the speculations, planning the scenarios
and analyzing the results in terms of application im-
pact are all activities the reader should be very com-
fortable with within the context of the modeling tools
already being used. Simalytic Modeling requires the
same level of analysis and presentation once the
model has been completed and calibrated.

3.1 Workload Analysis Phase
In the Workload Analysis Phase the modeler col-

lects information about the application to be modeled.
This includes identifying, defining, documenting and
measuring the application. This phase includes the
same type workload analysis done for system level
modeling efforts, but it must be done for all of the
systems supporting the application. It also includes
collecting additional information about the application
from the enterprise point-of-view.
Identify: Identify the workload. Identifying the work-

load to be modeled is often the most difficult step of
any modeling activity. Because Simalytic Modeling
takes an enterprise view of the application, the
identification process is even more difficult. Not only
does the application need to be identified for each
system, but it must also be identified at a global
level. How a workload is identified will differ be-
tween platforms and depending on what database
and middle-ware was used. A CICS transaction us-
ing DB2 provides different data collection than a
Tuxedo transaction using Informix. A totally in-
house developed application may provide better or
worse data collection, but most certainly different.
Although workload identification is done on each
platform, it cannot be done independently. How the

workloads are correlated across the platforms must
be considered during identification.

Start by identifying what the end-users think of
as the business transaction. This is no longer a sin-
gle CICS screen, but it is often a series of prompts
and replies that, taken together, make an single ac-
tivity such as entering an order. Regardless of the
modeling technique used, workload analysis is very
complex and requires substantial effort. The point of
this step is to understand the objective, which is to
define business activities, such as orders entered, in
terms of measurable work elements, such as trans-
actions A, B and C. The workload projections and
response time measurements are at the business
level. The models are built at the IT (Information
Technology) transaction level. There must be a
valid mapping between these two levels.

This step must be done in conjunction with both
the application developers and the end-users. It is a
series of trade-offs between what the end-users
would like to use and what is realistic, considering
how the application works. For example, if new or-
ders and inquiries of existing orders are done from
the same screen using the same transaction, it may
not be possible to separate them into different
workloads.

Document: Document the application topology. What
transactions are routed where under what condi-
tions? Are the IT transactions (i.e. CICS or Tuxedo)
serialized or are some executed in parallel? Is the
client/server architecture 2-tier, 3-tier, a combination
or something altogether different? The documenta-
tion technique used should be whatever best sup-
ports the application and has the support of the
users and developers, who must maintain the
documentation.

The objective of this step is to produce a topol-
ogy description of the application that can be easily
and accurately translated into a simulation model.
When this step is completed, the modeler should be
able to track a business transaction from the origi-
nating workstation through the entire environment
(including all splits, protocol translations, routing de-
cisions, etc.) back to the same workstation.

Measure: Measure the workload. One of the key en-
ablers for Simalytic Modeling is the ability to meas-
ure the application from both the business point-of-
view as well as at the system level. The overall Si-
malytic Model can be calibrated only if the respon-
siveness of the business transactions can be
measured. The node level model can be calibrated
only if the IT transactions can be measured. The
measurement of the IT transactions is generally al-
ready implemented for the node level models cur-
rently being done. However, in today’s client/server
environments, the measurement of the business
transaction is very difficult.

Don’t Plan Capacity When You Should Predict Applications 6 CMG97 Session 443, December 10, 1997

In this step, the modeler must determine the
ability to measure the application and workloads at
each system and from the end-user point-of-view
(sometimes referred to as end-to-end response
time). It is assumed here that the node level meas-
urement data are readily available. At the very least,
the modeler must have additional information about
the number, frequency and response times of the
business transactions. If the application or the sys-
tem does not collect the data, the modeler may
need to observe the application users and collect
the data manually. Although far from providing the
quality of data most modelers have come to expect
from today’s systems, manually collected data will
allow the modeler to produce enough results to
hopefully encourage the application designers to
generate the required data on an on-going basis.

The objective of this step is to determine the
feasibility of the modeling effort. If adequate meas-
urement data cannot be collected then the modeler
must determine if sufficient interest will be gener-
ated by the effort to increase the quality of the
measurement data. Another possible approach
would be to use the Simalytic Model to establish
reasonability bounds for each node based on overall
application performance. However, how well such
results will be accepted will vary by organization and
company.

Correlate: Correlate the workload across systems.
The final step of Workload Analysis is to determine
the correlation between the workloads at each sys-
tem. Does the definition for a workload at one sys-
tem really mean the same thing as that workload at
another system? There cannot be any additional or
missing transactions. For example, if workload W1
is defined as three transactions, A, B and C, then
the measurement of W1 at system S1 must include
all of the transactions A, B, and C that are routed to
S1. In addition, it cannot include any other transac-
tions that run on S1 not included in the overall defi-
nition of W1. This appears to be a straight-forward
requirement, but it becomes very complex as the
client/server environment grows and applications
attempt to reuse functions. An existing legacy appli-
cation transaction might be invoked by more than
one client/server business transaction to look up
customer information. This transaction would then
need to be included in multiple workloads, which
would then cause error in the model. This situation
cannot be resolved without some additional applica-
tion modification to enable collecting data about
which workload invokes each transaction.

The objective of this step is to insure the con-
sistency of the workloads across the entire enter-
prise model. Problems, such as the one mentioned
above, need to be identified, documented and re-
solved with data collection, application changes,
model changes or simplifying assumptions.

3.2 Node Models Phase
In the Node Models Phase, the modeler models all

of the systems supporting the application. This phase
includes the same type modeling done for system
level modeling efforts, but coordinates the node level
models to integrate with the additional information
about the application from the enterprise point-of-
view.
Build: Build a model of each node. Building a model

of each node used by the application is not signifi-
cantly different from any existing system level mod-
eling efforts. Whatever tool is currently used to
model each system should be used for that node in
the overall model. The major difference is that the
workload definitions used in the node models are
those developed in the prior Workload Analysis
phase. From a realistic stand-point, only the appli-
cation of interest should be modeled as an identifi-
able workload with response time predictions. All
other activity at each node should be included only
to understand resource usage and correctly influ-
ence the workload of interest.

The objective of this step is to build a model of
each system, but to also take advantage of any ex-
isting modeling efforts. Although the workload defi-
nition may change, the processes already in place
to collect measurement data and calibrate the mod-
els, and possibly some of the actual models, for any
of the nodes can be effectively reused.

 Calibrate: Calibrate the model of each node. The
node level models must be valid (calibrated and
verified) before continuing. This can be time con-
suming for a complex application if there are a large
number of nodes involved. There must be a high
degree of confidence in the predictive nature of
each of the node models. Because the Simalytic
Model will connect the nodes together using the
workload definitions, an error or poor results from
any one node model can impact the accuracy of the
Simalytic Model for the entire application.

The calibration techniques used are dependent
on the modeling tools and are much too complex to
discuss here. In addition, care must be taken to in-
sure that steps taken to calibrate one node do not
contradict assumptions made in a different node
model.

The objective of this step is to have a solid pre-
dictive model for each node that presents a consis-
tent view of the application across all nodes.

Run: Run the models. Develop a profile of the appli-
cation by running each of the node models for a se-
ries of arrival rates from very low (i.e. .01 or .001) to
very high (either the model saturates or the ‘knee’ of
the response time curve is well established). The
actual arrival rates used will depend on the applica-
tion and should make sense to the actual users of
the application. The arrival rate increment should be

Don’t Plan Capacity When You Should Predict Applications 7 CMG97 Session 443, December 10, 1997

as fine as is practical, considering the time and re-
sources required for each execution of the model. If
the arrival rate range is .01 to .09 then the incre-
ment should be something like .005 or .001. If the
arrival rate range is .1 to 10.5, then the increment
should be larger, like .05 or .1. The increment does
not have to be uniform across the range; use a
larger increment when there is little change in the
response times between arrival rates and use a
smaller increment when there is a large change.

The objective of this step is to establish a re-
sponse time curve that can be used to extrapolate
the response time when presented an arrival rate
not modeled.

Create: Create a model results table. Create a table
of response times and arrival rates for each system
for the workload of interest. Other workloads on the
system will not be modeled in the Simalytic Model
but they are still accounted for in the node level
system models. A key assumption here is that the
other workloads provide a consistent load on the
system and thus a consistent level of interference to
the application workload being modeled. If this is not
true, then the table must be extended to include
some external parameters, such as time of day. The
response time values must then be based on the
combination of those parameters and the arrival
rate.

The objective of this step is to characterize the
application performance and responsiveness. The
information in this table will be used to create the
Simalytic Function when the Simalytic Model is con-
structed.

3.3 Simulation Model Phase
In the Simulation Model Phase, the modeler builds

an overall model of the application with each of the
systems supporting it represented as a node or server.
This phase uses the information from the Workload
Analysis Phase to connect each of the systems to-
gether to provide the enterprise view of the applica-
tion.
Build: Build an overall model. Using the simulation

tool of choice, build an overall model of the applica-
tion with a single server for each node in the sys-
tem. This model is defined by the application
topology documented in the Workload Analysis
stage. It identifies what transactions are routed to
which nodes under what circumstances. This overall
model of the application can be built before any of
the node level performance data has been col-
lected. Make assumptions as to the expected or de-
sired performance at each node and use the model
to identify how sensitive the application is to
changes in the performance of any given node. If
large variations in service time at a node have only
minimal response time impacts, then that node level
model may be deferred.

The objective of this step is to build a model of
the application that represents the overall applica-
tion behavior across the enterprise.

Set: Set the overall model parameters. Set the serv-
ice time of each node to the lowest response time in
the table created in the Node Models Phase. Set
each node to have enough servers so that there is
no queuing at any node. How this is done will differ
with each of the simulation tools. Generally, it is
some type of replication factor within the node. The
value must be very high so that there is never any
queuing to get a transaction through the node. It is
generally not a good idea to create multiple nodes
because of the problems that creates with transac-
tion routing. In the enterprise model, the service
time and the response time for each server will be
the same because the queue time is accounted for
in the response time data for the server. (The serv-
ice time of each node in the simulation model is the
response time from the analytic model of that node,
which is a combination of queue time and service
time.)

The objective of this step is to set the simulation
model such that the response time at any node can
be controlled by the Simalytic Function when it re-
places the static service time in a later phase. In
addition, the simulation model at this stage can be
used to verify the application topology and conduct
sensitivity analyses of user expectations.

Calibrate: Calibrate the overall model. Calibrate the
simulation model against the end-user response
time for the very low arrival rate and verify that
there is no queue time at any of the nodes. Because
the response time from the queuing theory tool in-
cludes the queue time in the node, any queue time
in the simulation model will, in effect, double count
the queue time. The simulation tool is being used to
control the flow and routing of transactions, not cal-
culate the queue time. This step should insure that
the topology and routing information is correct be-
fore too much effort is spent developing the Sima-
lytic Model.

The objective of this step is to verify that the
simulation model accurately reflects both the topol-
ogy of the application and the response time seen
by the users at very low arrival rates.

3.4 Simalytic Model Phase
In the Simalytic Model Phase, the modeler incorpo-

rates the results of the system models into the overall
model of the application. This phase uses the infor-
mation from the Workload Analysis Phase and the
Node Models Phase to provide the predictive capabili-
ties to the enterprise view of the application.
Create: Create the Simalytic Function. Using the table

of response times and arrival rates created from the
node models, create a Simalytic Function for each
node. This can either be a look-up table or a formula

Don’t Plan Capacity When You Should Predict Applications 8 CMG97 Session 443, December 10, 1997

derived from the curve established by fitting a line
to the response time data. The details of the func-
tion and how it is implemented will depend on the
simulation modeling tool used for the overall model
framework.

The initial function is implemented by converting
the interarrival time between each pair of transac-
tions to an arrival rate and thereby to the associated
response time (Norton 1996). It is most likely that
the initial function will not provide accurate enough
results due to issues such as arrival distributions.
This is because of the difference between the indi-
vidual transaction nature of the simulation model
and the averaging effects of the analytic node mod-
els.

The function will need to be enhanced to include
additional information about the state of the node for
each transaction. The more complex function is re-
ferred to as the Simalytic Function because it not
only includes the results of the node models, but
also the additional features to select the most ap-
propriate result for each transaction visit. To do this,
the arrival rate used will more than likely need to be
modified by some technique. One approach is to
maintain a rolling average over some number of
transactions. The number needs to be small enough
to maintain the responsiveness of the model to
workload changes but large enough to minimize the
influence of isolated instances of very small interar-
rival times. Another approach would be to examine
the node to determine the current number of trans-
actions being serviced or the node utilization, then
select an arrival rate more consistent with that node
state. The technique chosen is a trade-off between
rapid development and model accuracy. Any com-
bination of techniques can be used. Implement the
simplest Simalytic Function possible and enhance it
as required, and only when necessary, to achieve
the desired level of accuracy.

The objective of this step is to create a function
for each node that accurately reflects the applica-
tion’s behavior. Each Simalytic Function must return
a value for the service time of the node for each
visit of a transaction based on transaction interarri-
val time and other node state information.

Replace: Replace the static service times. Replace
the service time for each node with the function cre-
ated in the prior step. Again, how this is done will
differ with each simulation tool. For example, some
simulation tools support load dependent service
times and the response time values can be entered
into the load dependent service time table. How-
ever, this technique may not be viable if a more
complex function is required and the load dependent
server cannot implement a Simalytic Function.

The objective of this step is to implement the
Simalytic Function in each node of the overall

simulation model. The service time used for each
transaction visit is the value returned by the Sima-
lytic Function.

Calibrate: Calibrate the Simalytic Model. First cali-
brate it against the prior simulation model for the
very low arrival rate to insure the overall model
structure is still correct. Next, calibrate it against
known end-user response times for known arrival
rates. Enhance the Simalytic Function as required to
get the necessary level of accuracy. The objectives
of the modeling effort will determine what is an ac-
ceptable level of accuracy.

The objective of this step is to insure that the
Simalytic Model provides valid application predic-
tion within the required level of accuracy.

3.5 Model Analysis
The next phase uses the Simalytic Model to ana-

lyze the application. At this point, the Simalytic Model
can be used just as any other type of model which has
been calibrated. In addition, how a model is used to
answer “what-if” questions is very dependent on the
questions themselves. Therefore, the details of the
phase will not be discussed here other than to note
that all of the phases of constructing a Simalytic
Model should be considered as a spiral development
process. The completion of each phase may identify
additional information or requirements for one of the
prior phases. This provides the added benefit of al-
lowing the modeler to implement a quick, simple Si-
malytic Model and then continue to refine it based on
the business requirements and objectives.

4. Simalytic Model Implementation
An actual Simalytic Modeling effort is very com-

plex and involves creating and calibrating multiple
models. In order to focus on the model building proc-
ess, a simplistic example is used to illustrate the steps
presented in Section 3.

4.1 Implementation Example
This implementation of a Simalytic Model uses a

hypothetical client/server environment to illustrate the
process. Assume the workload of interest is an Order
Entry application on one server, and a Shipping appli-
cation on another server also used by the Order Entry
application. The Order Entry user types in the name of
an existing customer and gets not only their address,
but information about any orders. This may provide
better service, but it also causes transactions to be
sent to another system. Defining the topology of the
application identifies that some number of the Order
Entry transactions are routed to the Shipping server.
The measurement data provides the number and dis-
tribution of transactions. If the Shipping workload out-
grows the system, it can impact the responsiveness of
the Order Entry transactions. In addition, growth in the
Order Entry workload will now impact the Shipping
system, but only if the orders are from existing cus-

Don’t Plan Capacity When You Should Predict Applications 9 CMG97 Session 443, December 10, 1997

tomers. The systems cannot be modeled independ-
ently because the service time for one system is de-
pendent on the response time of the other. When the
Order Entry transaction rate increases, more transac-
tions are sent to the Shipping server. The increased
response time at Shipping will cause the overall re-
sponse time for those transactions to increase, which
will be seen as either longer average response time or
reduced through-put for the application.

Figure 2 A Simple Enterprise Model shows a dia-
gram of this system. The response time is measured
from Arrivals to Departures, either through the Ship-
ping node or around it. This example shows how the
Simalytic Model connects what is happening in the
application on the different servers. If the Order Entry
system is modeled by itself, the workload representing
the long transactions (those also sent to Shipping)
would not reflect the increased response time due to
the load at Shipping. Because of the additional appli-
cation information in the Simalytic Model, it can adjust
the response time in the Shipping server based on the
current load, which will then be reflected in the Order
Entry transactions that visit the Shipping server.

As with any modeling effort, there must be busi-
ness objectives to analyze using the model. Assume
that the manager of the Order Entry department has
requested a model to determine when the Order Entry
system will need to be upgraded in order to maintain
the required response time of less than 1.7 seconds.
The arrival rate is assumed to have a constant in-
crease over the next 18 months (the scope of the
analysis) and the percent of the Order Entry transac-
tions that also query the Shipping system is assumed
to be 30%. The response time goal for the Shipping
system is less than 10 seconds (because these trans-
actions generally do not involve a waiting customer).
The objectives of the analysis are to answer two
questions: “When does the Order Entry system fail to
meet the business response time goal?” and “What
must be upgraded to again meet the goal?”

4.2 Implementation Process
Although the implementation process for the ex-

ample follows the steps presented in Section 3, many
assumptions have been made about the information
collection process to simplify the example. The actual
implementation uses some inexpensive and readily

available tools. The framework is implemented using
Simul8 (Visual), a general purpose simulation model-
ing tool developed primarily to model manufacturing
situations. The performance characteristics of the
nodes are developed using the results of the OpenQN
analytic tool (Menascé, Almeida, and Dowdy 1994).
OpenQN is a simple Pascal program that reads an
input file of workload parameters and produces a re-
port. OpenQN was selected because it is easy to use,
fast and included with Dr. Menascé’s book (Menascé,
Almeida, and Dowdy 1994). Finally, Microsoft‘s Visual
Basic provides a rich programming environment and
an interface to Simul8 to implement the Simalytic
Function™. This interface was one of the main rea-
sons Simul8 was selected for the research in Simalytic
Modeling. Either Visual Basic programs or Microsoft
Excel spreadsheets can be used for either the service
time or for the transaction distributions at each server.
In addition, either the programs or the spreadsheets
can make subroutine calls to the model to get current
state information or to control the model itself. Al-
though not as sophisticated as many of the cli-
ent/server tools available, Simul8 provides a simple to
use GUI interface in addition to excellent extension
capabilities to implement a Simalytic Function.
4.2.1 Workload Analysis Example
Identify: For this example, there is a single Order En-

try transaction, OE, and a single Shipping transac-
tion, S. The OE transactions are the workload of
interest. The S transactions need to be included only
to the extent they impact the OE transactions. How-
ever, some additional information about the S
transaction response times is included to illustrate
the pit-fall of modeling the systems independently.
The S transaction arrival rate is kept constant at 0.1
arrivals per second. Only the OE transaction arrival
rate is changed to represent growth in that workload.

Document: Refer to Figure 2 A Simple Enterprise
Model. Assume that measurement data shows 30%
of the OE transactions are also routed to the Ship-
ping server. To keep this example simple, also as-
sume that all of the transactions that execute on
either server use the same resources. This means
that there is no difference on the Order Enter server
between the OE transactions that route to Shipping
and those that don’t. It also means there is no dif-
ference between the transactions that execute on
the Shipping server (i.e. an OE transaction routed to
Shipping consumes the same resources on the
Shipping server as an S transaction).

Measure: Because this is a hypothetical client/server
environment, there are no actual measurements.
Therefore, the results of a purely simulation model
of the environment will be used to represent these
measurements.

Correlate: The workload correlation is assumed.

OE
Transaction

Arrivals

Departures

Order Entry Shipping

S
Transaction

Arrivals

Figure 2 A Simple Enterprise Model

Don’t Plan Capacity When You Should Predict Applications 10 CMG97 Session 443, December 10, 1997

4.2.2 Node Models Example
Build: The service times for the OpenQN model of

each node is shown in the following table:

Calibrate: The model of each node is assumed to be
calibrated for this example.

Run: An OpenQN model was run for each node.
Create: Partial results of the OpenQN model of each

node are shown in the following table (not all data
points are shown in the table to save space). Notice
that the model was not run for the Order Entry
server for a number of arrival rates because there
was no significant change in response time. Also
notice that the arrival rate step was reduced from
.05 to .02 to better define the knee of the response
time curve for Shipping:

4.2.3 Simulation Model Example
Build: The overall simulation model was built using

Simul8 as shown below:

Set: The service times of both the Order Entry and
Shipping servers are set to the lowest response
times from the table above. The replication factor
for each server is set to 100 to avoid queuing. The
average response times for that model run (ten tri-
als) are 0.56 for OE and 2.01 for S. These response
times are very close to the expected values of 0.7
and 2.00, respectively (the expected OE response
time is 0.7 because of the routing to Shipping:
0.1+0.3*2.0=0.7) The OE response time is slightly
lower because the routing was slightly lower than
30% in most of the trial runs due to the small num-
ber of transactions at the low arrival rate.

Calibrate: The results of the above model are com-
pared to a pure simulation model, also built in Si-
mul8, to calibrate the model. The service times are
the same as shown in the table in section 4.2.2. The
simulation model is shown below:

Server Order
Entry

Shipping

Workload OE S
Device 1: CPU 0.02 0.10
Device 2: Disk1 0.06 0.70
Device 3: Disk2 0.02 0.50
Device 4: Disk3 0.40
Device 5: Disk4 0.30
Total Service Time 0.10 2.00

Server: Order
Entry

Shipping

Arrival Rates Response Times
0.01 0.10 2.01
0.50 2.70
1.00 0.10 4.54
1.10 5.43
1.20 6.98
1.25 8.33
1.30 10.65
1.35 15.76
1.40 38.21
1.42 119.96
2.00 0.11
10.00 0.20
15.00 0.66
15.75 1.15
16.00 1.56
16.25 2.46
16.50 6.06

Don’t Plan Capacity When You Should Predict Applications 11 CMG97 Session 443, December 10, 1997

Selected results from multiple runs of this model
are shown in the table below:

To reduce the impact of arrival distributions,
each data point is the average of ten trials for each
arrival rate. The heading Arrival Rate refers to the
arrival rate for the OE transactions. The S transac-
tion arrival rate is kept at a constant value because
it is not the workload of interest. Each trial was for
3600 simulation seconds (one simulation hour) with
a 100 second warm-up period.

4.2.4 Simalytic Model Example
Create: Create the Simalytic Function. The Simalytic

Function was created using Microsoft’s Visual Basic.
For this example, it is a very simple function that
calculates the rolling average of the interarrival
times for each workload and looks up the corre-
sponding response time in a table.

Replace: Replace the static service times. The table
below shows the results of the model trials after the
Simalytic Function was implemented:

Calibrate: The results of the above model are com-
pared to a pure simulation model to calibrate the
model as shown in Figure 3 Response Time Com-
parison. The Simalytic results track the simulation
results. The slight under predicting is consistent with
the simple implementation of the Simalytic Function
and is fully explained in the author’s ongoing re-
search.

4.3 And The Answer Is…
How do the these results relate to the questions

asked in section 4.1? Figure 3 shows the answer.
When the business volume grows to 3.33 OE transac-
tions per second the response time will exceed the
goal of 1.7 seconds. Furthermore, the way to keep OE
transactions under the goal is to upgrade the Shipping
server rather than the Order Entry server because the
OE response time is directly related to the longer
Shipping transactions.

Figure 3 graphs the response times
for a number of different models. The
response times are shown in pairs; one
response time for the OE transactions
and one for the S transactions. The
OpenQN lines represent only the work-
load at the respective servers. All of the
others include OE transactions sent to
Shipping in the OE workload. The
Simulation lines represent the pure
simulation model and the Simalytic lines
represent the Simalytic Model results.
Because the S transaction workload ar-
rival rate was kept constant, the Arrival
Rate axis is the OE arrival rate except
for the OpenQN S Transactions line,
which shows what happens at the Ship-
ping server. In all other cases, the in-
crease in S transaction arrival rate is
due to the transactions sent to Shipping
from Order Entry.

OE Arrival
Rates

OE Response
Times

S Response
Times

0.01 0.677 2.093
0.10 0.730 2.119
0.20 0.749 2.151
0.50 0.787 2.273
1.00 0.857 2.498
2.00 1.069 3.155
3.33 1.777 5.495
3.70 2.332 7.487
4.00 3.317 10.674
5.00 59.415 215.970

OE Arrival
Rate

OE Response
Time

S Response
Time

0.01 0.661 2.080
0.10 0.716 2.123
0.20 0.728 2.126
0.50 0.754 2.166
1.00 0.780 2.292
2.00 0.907 2.696
3.33 1.622 5.085
3.70 2.036 6.468
4.00 2.838 9.062
5.00 11.492 38.144

Response Times Comparison Chart

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

0.01 0.10 0.20 0.50 1.00 0.80 0.71 2.00 3.33 3.70 4.00 5.00

Arrival Rate

R
es

po
ns

e
Ti

m
es

Simulation OE Transactions Simulation S Transactions
Simalytic OE Transactions Simalytic S Transactions
OpenQN OE Transactions OpenQN S Transactions
Response Time Objective

Figure 3 Response Time Comparison

Don’t Plan Capacity When You Should Predict Applications 12 CMG97 Session 443, December 10, 1997

From Figure 3 we can make the following observa-
tions: OpenQN shows the Order Entry System re-
sponse time to be flat and does not predict a response
time of 1.7 until almost 16 transactions per second.
The simulation and Simalytic Model results are very
close and both show the OE workload exceeding the
goal at 3.33 transactions per second .

Which is the best approach to use? The queuing
theory tool greatly underestimates the OE workload
response time because it does not account for the im-
pact from the Shipping system. The results of a simple
single-server simulation model (not shown) greatly
overestimate the OE workload response time because
of the rapid queue buildup at a single server. Only the
full simulation model and the Simalytic Model repre-
sent the actual workload behavior. Which is the best is
determined by the complexity of the modeling effort.
The Simalytic Model is more attractive when the
nodes are too complex to be easily modeled with a
general simulation tool.

5. Conclusion
The traditional view of planning the capacity of a

system is evolving because of the desire to predict the
performance of the application. Applications designed
to exploit a client/server architecture greatly increase
the complexity of both the computer system configu-
rations and the applications themselves. Predicting
the responsiveness of those more complex applica-
tions requires a more complex modeling methodology.
But adding complexity to a modeling effort also adds
time, effort and cost. There are many techniques and
tools that are beginning to address this evolution, but
none of them can provide the desired level of detail
for every situation and every application.

By following these steps for implementing a Sima-
lytic Model, the modeler can rapidly produce an appli-
cation model at the level of detail needed to make
business decisions. Combining different modeling
techniques (simulation and analytic queuing theory)
and different modeling tools (platform-centric and
general purpose) reduces the time, effort and cost of
developing an enterprise application model. As more
detailed results are required, more sophisticated tools
can then be used to increase the understanding of
critical sections of the model.

This level of analysis provides insight into the ap-
plication’s future performance that would not otherwise
be available. Using the Simalytic Modeling Technique
both improves the understanding of the application as
well as identifies which systems require more detailed
analysis. It protects the investment an organization
has made in acquisition and training of existing tools.
It allows the most appropriate tools to be used for
each modeling effort.

Capacity planning is still fundamental to business
success. But just as application designs are moving
away from single system solutions, modeling for ca-

pacity planning must move away from single system
analysis and begin predicting the application across
the enterprise.

6. Acknowledgments
The author would like to thank Mr. Rick Lebsack

and Mr. Larry Kayser for their interest and in-depth
critiques of the early versions. A special thanks is also
expressed to Dr. John Zingg, Dissertation Committee
Chair, for his insight and assistance.

7. References
Gunther, Neil J. 1995. Performance Analysis and Capacity Planning for

Datacenter Parallelism. In Proceedings. Computer Meas-
urement Group: CMG, Inc.

Hatheson, Amanda. 1995. Two Unix Client/Server Capacity Planning
Case Studies. In British Proceedings. Computer Measure-
ment Group: CMG, Inc.

Kobayashi, Hisashi. 1981. Modeling and Analysis: An Introduction to
System Performance Evaluation Methodology. The Systems
Programming Series. Reading, MA: Addison-Wesley Pub-
lishing Company.

Menascé, D., V. Almeida, and L. Dowdy. 1994. Capacity Planning and
Performance Modeling: from mainframes to client-server
systems. Englewood Cliffs, New Jersey: Prentice Hall.

Norton, Tim R. 1996. Simalytic Enterprise Modeling: The Best of Both
Worlds. In Proceedings. Computer Measurement Group,: 1-
12. San Diego, CA: CMG, Inc.

Norton, Tim R. 1997a. Simalytic Hybrid Modeling: Planning the Capac-
ity of Client/Server Applications. In Proceedings. 15th
IMACS World Congress,: 1-6. Berlin, Germany: International
Association for Mathematics and Computers in Simulation.

Norton, Tim R. 1997b. Simalytic Modeling: A Hybrid Technique for
Client/Server Capacity Planning. In Proceedings. Summer
Computer Simulation Conference,: 1-6. Arlington, Virginia:
Society for Computer Simulation.

Pooley, Rob. 1995. Performance Analysis Tools in Europe. Informa-
tionstechnik und Technische Informatik 37 : 10-16.

Smith, Connie U. 1995. The Evolution of Performance Analysis Tools.
Informationstechnik und Technische Informatik 37 : 17-20.

Visual. Simul8 . Visual Thinking International Limited, 141 St James
Rd., Glasgow, UK G4 0LT.

Wilson, Gregory L. 1994. Capacity planning in a high-growth organiza-
tion. In Proceedings. Computer Measurement Group. Or-
lando, FL: CMG, Inc.

