Don’t Predict Applications When You Should Model the Business

CMG98 Session 6201

Dr. Tim R. Norton
Colorado Technical University
Colorado Springs, CO
http://www.simalytic.com

© 1998 Tim R. Norton

Agenda

◆ What is Enterprise Modeling?
 ◦ Levels: Device to Business
 ◦ Objectives
◆ Simalytic Modeling Review
◆ Business Modeling
 ◦ Simalytic Implementation
◆ Business Model Example
 ◦ Advantages of a Simalytic approach
◆ Conclusion
Enterprise Modeling?

◆ System View
 - Is the system big and fast enough?
 - Where are the bottlenecks?

◆ Application View
 - Which computer systems does it use?
 - Does the response time meet the objective?

◆ Business View
 - Business impact of application performance?
 - What is the Return on Investment for changes?

Overall Objectives

◆ Understand Application Performance
 - Across all aspects of the Enterprise
 - Interrelationships between components

◆ Define Levels of Detail
 - Device ➔ System ➔ Environment ➔ Business

◆ Connect the Levels
 - Use lower level results in general model
 - Use general model to find critical areas
 - Use highest level to analyze business impact
Disk Subsystem Model

- **Device Performance Analysis**
 - Focus on configuration details
 - Large amounts of trace data
 - Straight-forward verification
 - Good understanding of data paths
 - Relationship to application???
 - Relationship to business?????

Single System Model

- **Capacity/Performance Analysis**
 - Focus closer to acquisition level
 - Still large amounts of trace data
 - Verification ease is OS dependent
 - General understanding of data paths
 - Relationship to application?
 - Relationship to business???
Application Model

Transaction Flow
- Focus closer to user’s expectations
- Little overall trace data
- Verification is hard to impossible
- Poor understanding of data paths
- Good relationship to application
- Relationship to business?

Business Model

Process Flow
- Focus on ROI (Return On Investment)
- Little use of overall trace data
- Verification is complex
- Understanding of data paths poor to good
- Good relationship to business
- Poor relationship to application computer systems
Combined Model

- **Transaction and Process Flow**
 - Focus on supporting the business
 - Better use of trace data
 - Verification no more complex
 - Variable understanding of data paths
 - Good relationship to business
 - Good relationship to application computer systems

Simalytic Modeling Review

- **“Simalytic” (Simulation/Analytic)**
 - Hybrid - Combination of Techniques
 - Simulation model as framework
 - Analytic queuing theory node models
 - Simalytic Function bridges techniques
 - Existing tools
 - Predict capacity requirements
 - Heterogeneous computer systems
 - Enterprise level application model
Modeling Tools

◆ Platform-Centric Tools
 ● Narrow focus - Tend to be Analytic based
 ▪ Detailed information about single platform
 ▪ Easier to build but limited environments

◆ General Purpose Tools
 ● Broad focus - Tend to be Simulation based
 ▪ Features to model anything
 ▪ Level of granularity = Level of effort

◆ Business Process Tools
 ● Simulation of Business over Time
 ▪ Flows and levels

◆ All Available as Commercial Tools

Applicable Tools

◆ Most Applicable Modeling Tool
 ● Can be different for each node or part of a model
 ● Improves construction speed and accuracy

◆ Application Components
 ● Initially assumed constant
 ● Modeled for greater detail
 ● Specialized modeling tool for critical sections
Business Modeling

◆ What is it?
 ○ “System Dynamics” - Began in the 1950’s
 ○ Tool for managers to analyze complex issues

◆ How is it done?
 ○ Study:
 ▪ the parts of a system
 ▪ the interactions between the parts

◆ Why do it?
 ○ Maintain focus on business strategic objectives

What’s the Difference?

◆ Planning Capacity
 ○ System view - Internal task measurement
 ○ Resource utilization

◆ Predicting Applications
 ○ Enterprise view - User task measurement
 ○ Application responsiveness

◆ Modeling the Business
 ○ Business view - Return on Investment
 ○ Process flow understanding
Simalytic Modeling

- **Simalytic Modeling Phases**
 - Workload Analysis
 - Node Models
 - Simulation Model
 - Simalytic Model
 - Model Analysis

- **Simalytic Business Modeling Phases**
 - Business Process Analysis
 - Business Model Construction
 - Simalytic Function Integration
 - Business Model Analysis

Example Application

- **Order Entry Call Center**
 - Operators service customers
 - Two servers support Operators
 - Order Entry server - workload of interest
 - Shipping server - also used by OE transactions

- **Objective of the Business Model**
 - Understand the impact of transaction responsiveness on the business
 - Determine the minimal number of operators required for each hour
Example
Transaction Analysis

◆ Simple Two Server Model
 ○ Some OE transactions routed to both the Order Entry and the Shipping servers
 ○ Transaction response time goals:
 ■ OE = 1.7 seconds
 ■ S = 10 seconds
 ○ Same example presented in CMG97 paper

Example
Responsiveness

◆ Transaction RT
 ○ Table of RT results profiles application at each server
 ○ Created using OpenQN analytic modeling tool
 ○ Not every arrival rate required

<table>
<thead>
<tr>
<th>Arrival Rates</th>
<th>Response Times</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Order Entry</td>
</tr>
<tr>
<td>0.01</td>
<td>0.10</td>
</tr>
<tr>
<td>0.50</td>
<td>2.70</td>
</tr>
<tr>
<td>1.00</td>
<td>4.54</td>
</tr>
<tr>
<td>1.10</td>
<td>5.43</td>
</tr>
<tr>
<td>1.20</td>
<td>6.98</td>
</tr>
<tr>
<td>1.25</td>
<td>8.33</td>
</tr>
<tr>
<td>1.30</td>
<td>10.65</td>
</tr>
<tr>
<td>1.35</td>
<td>15.76</td>
</tr>
<tr>
<td>1.40</td>
<td>38.21</td>
</tr>
<tr>
<td>1.42</td>
<td>119.96</td>
</tr>
<tr>
<td>2.00</td>
<td>0.11</td>
</tr>
<tr>
<td>10.00</td>
<td>0.20</td>
</tr>
<tr>
<td>15.00</td>
<td>0.66</td>
</tr>
<tr>
<td>15.75</td>
<td>1.15</td>
</tr>
<tr>
<td>16.00</td>
<td>1.56</td>
</tr>
<tr>
<td>16.25</td>
<td>2.46</td>
</tr>
<tr>
<td>16.50</td>
<td>6.06</td>
</tr>
</tbody>
</table>

OpenQN Example Results
Example

Simlytic Model

◆ Application Model
 ○ Framework simulation model in Simul8
 ○ Replace static service times with Simlytic Function using OpenQN model results
 ○ Simlytic Model run for expected transaction arrival rates

Example

Transaction Results

Example

Business Analysis

◆ Business Elements
 ○ Call Flow
 ○ Call Completion Time
 ▪ Computer time (includes transaction response time)
 ▪ Other time (simplified process for this example)
 ○ Call Backlog
 ○ Operator Productivity

◆ Relationship Between Elements
 ○ Degree (i.e. small change causes large change)
 ○ Direction (direct, inverse, not consistent, etc.)

◆ Other Aspects: (Not Addressed in Example)
 ○ Calls: Types, length, complexity
 ○ Operators: Training, experience, seniority
 ○ Orders: Number per call, size, special kinds
 ○ Inventory: Age, promotions, turn-over
Example
Business Model

Diagram:

- **New Calls** → **Call Backlog**
- **Call Backlog** → **Number of Operators**
- **Number of Operators** → **Calls Completed**
- **Calls Completed** → **Transaction Response Time**
- **Transaction Response Time** → **Transactions per Call**
- **Transactions per Call** → **Transaction Setup Time**
- **Transaction Setup Time** → **Calls per Operator**
- **Calls per Operator** → **Computer Time**
- **Computer Time** → **Calls Completed**
- **Calls Completed** → **Other Time**
- **Other Time** → **Number of Operators**

Example
Business Model Results

Number of Required Operators Comparison

<table>
<thead>
<tr>
<th>Hour of the Day</th>
<th>Min Number of Operators</th>
<th>Max Number of Operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>25</td>
<td>250</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>246</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>248</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
<td>249</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>248</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>249</td>
</tr>
<tr>
<td>24</td>
<td>22</td>
<td>250</td>
</tr>
</tbody>
</table>

Best Case / Worst Case Analysis

© 1998 Tim R. Norton
Computer Measurement Group - Session 6201, December 11, 1998 - 23
Example
Simalytic Business Analysis

- **Same Business Model**
- **Vary Transaction Response Time**
 - Business load adjusts transaction load
 - Transaction load determines response time
 - Response time impacts backlog
 - Backlog determines number of operators

- **Key:** Transaction response time is based on a realistic application profile created by a valid application model.

Example
Simalytic Business Model

![Diagram of Simalytic Business Model]
Example Business Model Results

Number of Required Operators Comparison

![Graph showing the comparison of required operators with different models.](image)

- Staff reduction greater than 25 operators for 8 hours of the day over worst case analysis.
- More than 50 additional staff required for peak hours over best case analysis.

Example Business Model Analysis

- **Number of Operators Required**
 - Best case model shows non-stress number
 - Worst case model shows peak number
 - Simalytic model shows which applies to each hour

- **Best / Worst case scenarios identify the extremes but not the transition between them.**

- **Simalytic approach directly correlates upgrade cost to expense reduction.**
Conclusion

◆ Capacity Planning is Evolving
 ○ From system to applications focus
 ○ Greater need to predict application performance
 ○ Increased desire to relate application performance to business requirements
 ○ Evolution increases complexity
 ■ Client/Server increasing application complexity
 ■ Requires increasing modeling complexity
 ■ Adding complexity adds time, effort and cost
 ■ Business impact is the ultimate measure

◆ Most Modeling Tools
 ○ Good for specific problems
 ■ But generally only for a subset of whole problem
 ○ Fail when extended beyond design scope
 ■ Cannot be everything for everyone

◆ Needed Approach
 ○ Connect the “islands”
 ○ Examine the whole problem
 ○ Focus on details when needed
Conclusion

◆ Modeling Applications across Enterprise
 ○ Focus on evolution of capacity planning
 ○ Predicts application performance
 ○ Answer the business questions
◆ Simalytic Business Modeling
 ○ Technique for modeling applications
 ■ Across the enterprise with a business perspective
 ■ Defined implementation steps
 ■ Addresses the increased complexity

© 1998 Tim R. Norton

Conclusion

◆ Don’t Plan Capacity
 ○ Of complex multi-server applications
 ○ Or multi-tier Client/Server systems
◆ Don’t Predict Applications
 ○ Without overall objectives
 ○ Or understanding the business process impact
◆ Model the Business
 ○ To answer the Business questions
 ○ And insure the Business succeeds
Questions