
CMG99 Session 423, Reno, Nevada 1 December 8, 1999

End-To-End Response Time: Where to Measure?

Dr. Tim R. Norton
Simalytic Solutions, LLC

CMG99 Session 423, December 8, 1999

Because of the increasing need for application measurement, several vendors are offering prod-
ucts to track and record End-To-End Response Time. The question now becomes “where to
measure” instead of “how to measure.” Measuring application response time at several points can
produce an overwhelming amount of data but does not guarantee any meaningful information
from the business point-of-view. This paper discusses different approaches to selecting these
measurement points and presents several hypothetical examples to illustrate their meaningfulness
to business transactions.⋅


⋅ 1999 Tim R. Norton. All rights reserved.
Permission is granted to publish this article in the 1999 Computer Measurement Group Conference Proceedings.
All trademarked names and terms are the property of their respective owners.

1. Introduction
When looking at transaction based applications, it

is easy to focus on the methods of measurement that
are well known and comfortable. However, these don’t
provide enough information to understand what is hap-
pening at the business level of an application with
components spread across multiple heterogeneous
systems. The argument has been made that business
transactions will meet the overall service objective if
each of the components meets a service objective for
that component. This approach becomes inadequate
when applications start sharing common functions or
when the application is complex enough that different
functions have different service objectives (i.e. query
versus update).

New applications are no longer batch systems on
a single computer. They are now multi-platform on-line
transaction processing client/server systems combin-
ing departmental servers and mainframe repositories.
Such complex application designs utilize the features
and services of different types of computers
(mainframe, mid-range and desktop) and often impact
several aspects of the overall business. Techniques to
measure individual systems have been well under-
stood for some time. Techniques to measure applica-
tions have gained sophistication and popularity over
the last several years. The challenge now is to provide
a business focus that gets the best return on applica-
tion measurement while reducing the cost of data col-
lection.

This paper doesn’t present “the solution” because
that are no hard-and-fast right answers. What it does
present is a look at the relationship between the busi-
ness aspect and the technology aspect of measuring
an application. The value of limiting data collection to
what is needed to address the business problem is
also discussed. Section 2, Response Time Measure-

ment, presents a brief overview of measuring applica-
tion response time; Section 3, Transaction
Measurement, discusses the differences between
measuring Information Technology (IT) transactions
and Business Transactions; and Section 4,
Hypothetical Applications, illustrates how the meas-
urement points (where measurement data can be col-
lected in an application) impact the
business/application relationship using hypothetical
applications.

1.1 Background
Today’s computer environments must be viewed

with the objective of understanding how the systems
meet the end user’s requirements. By addressing the
business needs, we avoid viewing the computing envi-
ronment as an end in itself and relate the benefits of an
application to the business that depends on it. Unfortu-
nately, there are many pressures that try to shift the
focus to advances in technology without regard to what
the computing environment provides to the business it
was intended to support. Advances in technology lead
to a very rapid change, which means it is often difficult
to relate the value of many of the changes to the over-
all business in an objective manner. (Business in this
context means more than a for-profit company. It can
include any type of company, institution, agency, or
organization with an overall objective, be it revenue,
service or regulatory.)

Measurement has traditionally focused on re-
sources (CPU utilization, I/O rate, etc.) and workflows
(job throughput, internal transaction response times,
etc.) to determine if a given system is “good enough” to
service a workload (which, in theory, translates to an
application). Today, application measurement in large
computer installations with multiple systems requires
an understanding of not only the operating systems,
the platforms, the clients, the servers, the networks,

CMG99 Session 423, Reno, Nevada 2 December 8, 1999

the transaction systems, etc., but also the relationships
between them and the business objectives (such as
staffing levels and “widgets” sold). This relationship
allows business managers to understand the impact of
application responsiveness on the overall business
objectives. Instead of analyzing individual systems, the
responsiveness of the application needs to be under-
stood across the entire enterprise to insure that the
computing environment addresses the requirements of
the business objectives and goals. But this under-
standing requires measurement of both the application
(end-to-end response time) and the individual compo-
nents (internal response time).

2. Response Time Measurement
The idea of response time measurement has

been around for a long time. Early mainframe transac-
tion systems, such as CICS and IMS, quickly devel-
oped robust measurement facilities. Often referred to
as internal response time, these measurements reflect
the time from when the host system receives the
transaction until a response is sent back to the user.
The application was considered to be performing well if
the internal response time was within prescribed limits.
Network time was generally considered a separate
(external) problem to be dealt with by the network sup-
port organization.

The proliferation of multiple-tier client/server ap-
plications has made response time measurement
much more complex. There is no longer a single place
to collect the measurement information needed to de-
termine how an application is performing. Network time
is now interwoven with the response times of other
components of the application and cannot be easily
deferred to another organization. Furthermore, even if
all the transaction data is collected, it often doesn’t
contain enough information to understand the impact
of the application’s performance on the overall busi-
ness.

It is now much more important to look at applica-
tion response time from a business point-of-view. The
major business related benefits of using application
end-to-end response time measurement are:

• Service Level Agreements – evidence of
compliance to Service Level Agreements that
have been formally negotiated between the IT
organization and the end users.

• Application Prediction – predicting applica-
tion response times at increased loads for ca-
pacity planning or Service Level Agreement
modification.

• Configuration Management – understanding
the return on investment to the business for
changes in the physical environment such as
server upgrades or network enhancements.

These benefits are focused on the business ob-
jective, but each can be expanded to include the more
traditional Information Technology activities. For ex-

ample, Service Level Agreements can include day-to-
day performance activities, and Configuration Man-
agement can include capacity planning.

2.1 Current Techniques
The details of various techniques for measuring

response time are available in the current literature
(Knight and Haworth 1996; Lipovich 1997; McBride
1997; Ramanathan and Perry 1999; Smead 1998;
Smith and Williams 1998; Thompson, Muñoz, and De-
Bruhl 1997; Tsykin and Langshaw 1999). Some of
these concepts are briefly defined below. The inter-
ested reader is encouraged to refer to these, and
other, papers on various aspects of the general topic of
application response time measurement for specific
implementation details.

Tsykin and Langshaw (1999) provide a good
overview of the general techniques. They list four
broad techniques for application measurement:

• Application instrumentation: modifying the ap-
plication at the source code level to collect
performance data.

• Client instrumentation: inserting hooks into the
client environment to collect data on activities
such as operating system interrupts and/or
messages (as with Microsoft Windows).

• Wire Sniffing: monitoring, decoding and ana-
lyzing either raw network (sniffer) traffic or
server network packets (i.e., TCP/IP).

• Benchmarking: application scripts periodically
executed and measured.

Although there are variations of these techniques
in both the cited references and other sources, the
general concepts fall into the four broad categories
above. There are a very large number of factors in-
volved in any decision to measure an application. Be-
cause each of these authors has focused on a
somewhat different combination of these factors, their
conclusions, and suggested solutions, are more fo-
cused toward one of the four categories than the other
three.

Tsykin and Langshaw (1999) are concerned
about the volume of data and processing required to
correlate individual units of work across a complex
enterprise, so they advocate a technique based on
client instrumentation that characterizes user work
patterns, instead of collecting detailed transaction data.

McBride (1997) focuses on the need to identify
and measure the business transaction and advocates
the use of application instrumentation with ARM
(Application Response Measurement).

Smead (1998) provides an in-depth analysis of
different application instrumentation techniques, but is
focused on the low-level IT transaction, rather than the
high level business transaction.

Lipovich (1997) takes an application level, rather
than resource usage, view but looks at the compo-

CMG99 Session 423, Reno, Nevada 3 December 8, 1999

nents of the application response time from a server-
centric perspective.

Smith and Williams (1998) provide an interesting
approach to understanding application design for mod-
eling with the use of Message Sequence Charts to de-
scribe application behavior. These charts provide a
very clear representation of how messages and func-
tions flow between servers or components in an appli-
cation. Their use of these charts to represent three
types of CORBA-based synchronization (synchronous,
deferred synchronous and asynchronous) highlight
some of the pitfalls in selecting measurement points
and attempting to correlate resource usage to end-to-
end response time.

2.2 Measurement Points
Each of these is a valid approach to a given

measurement problem and illustrates the real issue of
understanding the need before selecting the solution.
Many approaches to end-to-end response time meas-
urement are based on a bottom up approach – look at
the data that can be collected and figure out what can
be done with it that is meaningful. This author believes
a top down approach is more productive for the overall
business. By starting with the business needs and
functions, the measurement effort can focus on what
supports business improvement and will be more
quickly accepted by management and other sponsors.
In addition, because there is a direct correlation to
business value, the data collected can be easily identi-
fied as either required or unnecessary.

Figure 1, Measurement Point Locations, shows a
graphical representation of a client/server environment
with many of the common measurement points la-
beled. The letters A through V represent measurement
points with an arrow showing the direction of transac-
tion flow. The other elements are dialog boxes1 (D1,


1 The term “dialog box” is used here because most of the client
instrumentation tools are specifically designed for instrumenting

D2 and D3), the client workstation (C1), servers (S1,
S2 and S3) and databases (DB1 and DB2). To avoid
an overly complicated figure, there is no distinction
between the client and the application measurement
points at C1. Measurement points A and F are used to
represent both, depending on which other measure-
ment point they are paired with. Using A as the trans-
action start and B as the transaction end, (A-B)
represents the client instrumentation that measures a
single dialog box or screen. Using A as the transaction
start and F as the transaction end, (A-F) represents
the application instrumentation that measures a busi-
ness transaction. Server based instrumentation is
really a form of internal response time measurement
that has been available for years. Although the imple-
mentations differ, there is no real conceptual difference
between measuring a transaction at a middleware
server such as S1 (I-J) and measuring it at a legacy
host server such as S2 (O-P).

The reader is reminded that this is a symbolic rep-
resentation and not intended to be a definitive detailed
description. Each real client/server application will dif-
fer. In addition, the author cannot be familiar with every
available end-to-end measurement tool, some of which
may implement additional measurement points. The
figure provides only enough detail to provoke thought
and discussion. The purpose of this paper is to en-
courage critical thinking about what is being measured
and where the measurements are taken
(measurement points). It is expected that readers will
identify additional measurement points supported by
tools with which they are experienced. Hopefully, this
look at response time measurement will encourage
them to ask why these measurement points are
needed and what the resulting metric means to the
business. This is not intended to imply any negative
connotation to these, or any other, measurement

Microsoft Windows environments. The concept applies equally to
whatever user interface the application uses for screen formatting.

server
S3

server
S2client

C1 server
S1 DB1

DB2

D2

D3

D1

 Message sent →
 Message reply ←

R ←

P ←

O →

I →

J ←

K →

V ←

U →

T ←

S →

Q →N ←

M →

L ←
B ←

D ←

F ←

H ←

G →

E →

C →

A →

Figure 1 Measurement Point Locations

CMG99 Session 423, Reno, Nevada 4 December 8, 1999

points, but to encourage the readers to use the infor-
mation presented here as a starting place from which
to develop the relationship between the transactions
and the resulting business value of a given application.

2.3 Using the Techniques
The four techniques for application measurement

(Application Instrumentation, Client Instrumentation,
Wire Sniffing and Benchmarking) can be described
using the measurement points identified in Figure 1.

• Application Instrumentation – Instrumenting
the application means measurement events
are generated by the application at the start
(A) and end (F) of a meaningful business
transaction. If the application creates meas-
urement events for only the start (A) and the
end (B) of the business transaction, the end-
to-end response time may include user think
time (B-C and D-E). The value of user think
time is very application dependent and may, or
may not, be appropriate to include in the end-
to-end response time. For example, it would
be reasonable to include user think time when
calculating the calls per hour for the operators
in a call center to determine the number of op-
erators needed but not to determine the im-
pact of a server upgrade.

• Client Instrumentation – Instrumenting the
client means measurement events are gener-
ated by “hooks” inserted into the client envi-
ronment (generally by a purchased tool) at the
identified API (Application Programming Inter-
face) between the application code and the
client operating system environment. Microsoft
Windows has a rich, well documented API
which accounts for the growing number of
tools designed specially for that environment.
This approach is limited by the instrumentation
tool’s ability to differentiate between multiple
instances of the same dialog box within a sin-
gle business transaction. If the tool cannot dis-
tinguish any difference in the measurement
points that terminate the transaction (B, D or
F) then this approach will measure multiple
Information Technology transactions (A-B, C-D
and E-F) instead of a single business transac-
tion (A-F). If it can decode the data in the API
call, then it is possible to distinguish the inter-
mediate measurement points from the final
measurement point and identify the business
transaction (A-F). User think time is also an is-
sue with this approach. In addition, the very
large number and complexity of API calls in an
environment such as Microsoft Windows
makes the task of inserting the “hooks” very
tedious and susceptible to error.

• Wire Sniffing – Instrumenting network seg-
ments (“the wire”) between clients and servers
is very non-invasive because it does not re-

quire any modifications to either the application
or the client environment. This approach pro-
vides very good data about network utilization
and traffic. It can also provide application to-
pology information by matching sending and
destination packet addresses. Other applica-
tion information may be available if the instru-
mentation software (either real-time or post-
processor) has enough knowledge to decode
the application level packet; however encryp-
tion can seriously limit this capability. This ap-
proach can measure response time for a
packet or message (G-H, K-L, or M-N), but it
can do little to measure the response time of
the business transaction. Even with sophisti-
cated matching and correlation, the client
processing component and the network time
between the client and the network measure-
ment point (A-G and H-B) are not captured in
the measurement.

• Benchmarking – Instrumenting by bench-
marking (sometimes referred to as synthetic
transactions) means to create a script or oth-
erwise controlled execution of selected func-
tions in an application. The script is run
automatically at an interval that will provide a
reasonable sample of the application response
time without adding a noticeable server or
network load. The main advantage to this
technique is that script response time can be
more accurately measured than the actual
production environment of the application.
Benchmarking can be implemented using a
variety of techniques, including application in-
strumentation or client instrumentation. The is-
sues discussed above for those approaches
still apply when they are used for benchmark-
ing. In addition, because it is actually a sam-
pling technique, it only provides an
approximation2 of application response time. A
further problem with this approach is that it of-
ten measures the application over a limited
subset of the network. This can cause the re-
sponse time measurement to be skewed
(either too low or too high). The benchmark
must be very carefully designed, and con-
stantly reevaluated, to avoid this problem.

Each of these techniques has advantages and
shortcomings. There is a direct correlation between the
ability to measure non-invasively and the ability to
measure application functions. The greater the appli-
cation understanding, the more invasive the measure-
ment technique becomes.


2 A discussion of statistical sampling is beyond the scope of this
paper other than to note that care must be taken when selecting the
interval and when summarizing the measured results. The inter-
ested reader should refer to a college level statistics textbook for
additional information about these issues.

CMG99 Session 423, Reno, Nevada 5 December 8, 1999

3. Transaction Measurement
For any given application, understanding the

measurement points (where measurement data should
be collected in the application) is a function of both
what the application does and the objective of the
measurement. What constitutes a transaction? How do
we count them? What is the business impact if there
are more (or fewer) transactions than expected or if
they take more (or less) time to complete? Measure-
ments for Service Level Management (Service Level
Objectives and Service Level Agreements) may satisfy
a political need, but they will be frustratingly useless if
they do not provide enough information to determine
what is causing the application response time to fail to
meet the service objective. On the other hand, large
amounts of resource-centric information (i.e., CPU
utilization, network segment utilization, I/O rates, etc.)
doesn’t help the decision makers understand the im-
pact to the application at the business level.

End-to-end response time measurements must
be related back to the business impact. Response time
is a valid metric only if there is some valid business
reason to use it. An example of this relationship is
shown by relating the responsiveness of an application
supporting an order entry call center to the number of
calls an operator can handle in an hour. The fewer
calls the operator handles means the more operators
that are required for a given call volume. That relation-
ship provides the information necessary to make the
business decision of upgrading the server or hiring
more operators (Norton 1998).

3.1 What vs. Where
When collecting end-to-end response time data,

the most important question is “Where to measure?”
The nature of the application and the business should
define what to measure. The Information Technology
organization’s task is to figure out how to collect that
measurement data. The decision will almost always
come down to measuring either Business transactions
or Information Technology transactions depending on
the objectives of the measurement activity.

3.2 Understanding IT Transactions
What are IT Transactions? Although there is no

formal definition, these are the transactions we most
often think of from an Information Technology per-
spective. These are the transactions that are reported
by the built-in data collection included in most current
operating systems, transaction systems and data-
bases. The best examples come from the MVS
(OS390) environment and include transaction based
systems (such as CICS, IDMS, and IMS), databases
(like DB2 and Adabas) and even the operating system
itself (measuring jobs and TSO sessions).

The open systems and NT environments are
rapidly closing the “measurement gap” by providing
measurement data from most of the major transaction
based systems (such as CICS6000 and Tuxedo), da-

tabases (like DB2, Oracle, Informix and Sybase) and
other components (such as MQSeries and SAP). Gen-
erally these transactions are identified and measured
on individual servers with little correlation to activities
on other servers. The response time measurement
most often associated with Information Technology
transactions is internal response time because it is the
measure of response time internal to the particular
system without other components such as the network.
(For example, the CICS response time measurement
refers only to time the transaction spends inside
CICS). Internal response time is usually measured by
the transaction or database system.

An increasing complication with these systems is
their attempt to account for the response time compo-
nent outside of their environment. Although much more
complex in today’s client/server environments, it is the
same problem we have always faced when dealing
with spawned transactions and complex database que-
ries. The response time of a transaction includes both
processing time and wait time. But wait time is really
the response time of another service or component,
which is also both processing time and wait time. Cor-
relation, rather than collection, is the issue.

3.3 Understanding Business Transactions
What are Business Transactions? Again, there is

no formal definition, but these are the transactions we
most often think of from an end user’s perspective. A
Business Transaction is much harder to define in gen-
eral terms because it completely depends on the na-
ture of the business. A mail-order business might
define business transactions as placing an order over
the phone and shipping a package to a customer. A
restaurant might define a business transaction as
serving a meal to a group of people. In either case, the
end user has a relatively clear understanding of a
transaction, but there can still be differing perspectives.
Does the restaurant transaction start when the cus-
tomer walks in the door, when they sit at the table or
when the server greets them? It depends on who is
doing the measuring and what their objective is in do-
ing it.

3.4 The IT to Business Relationship
The overall objective is to develop a relationship

between the business transactions and the Information
Technology transactions. Benchmarking and synthetic
transactions (Ramanathan and Perry 1999) provide a
compromise between internal response time meas-
urements and true end-to-end response time meas-
urement because they are typically much closer to the
application services. However, they bypass much of
the network experienced by the end users. The results
of these techniques are quite valuable when combined
with true end-to-end response time to identify network
performance issues. These performance issues are
often dismissed because it is thought a waste of time
and effort to measure what is outside the control of the

CMG99 Session 423, Reno, Nevada 6 December 8, 1999

application, but they have a direct impact on the overall
business.

Knowing the end-to-end response time isn’t
enough if the application uses common services
shared across several applications. For example, Ra-
manathan (1999) measures Network File System
(NFS) services and assumes an average “good” re-
sponse time is good enough for all users of the serv-
ice. However, it is easy to envision two applications
using the same NFS service with very different I/O
characteristics and response time requirements. We
often need to measure both the end-to-end response
time and the service response time. The difficulty is
coordinating the two measurements to understand how
changes in the service response time impact the appli-
cations at the business level (i.e., which application
transactions are responsible for which server transac-
tions).

In the final analysis, the measurement objective
has the greatest influence over the type of transactions
to measure. Business related questions will focus at-
tention on business transaction measurement and re-
source related questions will focus measurement on IT
transaction measurement. While it is certainly possible,
and even desirable, to collect both measurements, any
correlation between the two must be done very care-
fully. Issues that are mutually exclusive, such as user
think time, can cause the correlated results to be mis-
leading.

4. Hypothetical Applications
This section presents several hypothetical appli-

cations, starting from the simplest, and discusses how
each of the four broad techniques for application
measurement presented in Section 2, Response Time
Measurement, (Application Instrumentation, Client In-
strumentation, Wire Sniffing and Benchmarking), can
have different business level impacts. Other issues
regarding measurement points shown in Figure 1 will
also be discussed as appropriate.

The applications presented in this section are
completely hypothetical and are meant only to illustrate
some of the approaches to client/server application
development and identify some of the issues with
measuring each approach. The author makes no
claims regarding the completeness of the list or the
likelihood that any listed technique is actually used. It is
not intended to be an exhaustive list of client/server
implementation techniques. It is intended to provide
the reader with some insights into how to view applica-
tion measurement from both business and IT perspec-
tives. References to real applications are solely for the
purpose of illustrating the technique and are based
purely on the author’s speculation of how those appli-
cations have been implemented.

4.1 Simple Web Application
One of the simplest examples of a client/server

application is a single Internet web page used to front-

end an existing application inquiry. It is very easy to
measure the business transactions by measuring ei-
ther the web transactions or the IT transactions be-
cause there is a one-to-one correspondence between
them.

This application would be implemented with only
some of the components shown in Figure 1. A single
page web browser form, D1, is used by the user to re-
quest information. There is a simple mapping of the
web transaction (A-B), implemented as an HTML page
invoking a cgi script at web server S1 as I-J, to the IT
transaction, implemented as a legacy transaction using
CICS or IMS at S2 as O-P. The response time of data-
base transactions would be measured by S-T. A real
example of this type of transaction is the FedEx web
page to track the shipment of a package
(http://www.fedex.com/us/tracking/). This single web page
uses a cgi script with in-house developed middleware
to invoke an IMS transaction. Each tracking number
inquiry maps directly to a single invocation of an IMS
transaction.

Benchmarking is a reasonable approach if the
sampling and network subset issues can be ade-
quately addressed. Application instrumentation and
Client instrumentation both provide about the same
level of response time information because there is
little practical difference between the web transaction
and the business transaction. Wire Sniffing could also
provide good information because the application is
straightforward and it should be relatively easy to
match the start and end network messages. All of the
techniques must be implemented at multiple meas-
urement points (i.e., I-J, O-P and S-T), and the results
correlated, if any of these components are used by
other applications (or other types of transactions in the
same application).

4.2 Multi-Page Web Application
A more complex example of a client/server appli-

cation is using multiple Internet web pages (D1, D2
and D3) to front-end an existing application inquiry. It is
no longer possible to measure the business transac-
tion (A-F) by measuring the web transactions (A-B,
C-D, and E-F) because there is not a one-to-one cor-
respondence between them. Several web browser
pages are all part of a single form. Most of the real
work happens when the submit button on the last page
is pushed, causing that transaction (E-F) to have a
significantly higher response time. The multi-page web
form could invoke multiple IT transactions, such as
customer look-up (O-P) followed by order look-up
(Q-R). Examples are the Travelocity form to select air-
line flights (http://dps1.travelocity.com:80/airgrqst.ctl) and the
FedEx package tracking page to check the status of
multiple packages at once (with multiple invocations of
the same IT transaction).

Benchmarking is a reasonable approach if the
sampling and network subset issues can be ade-
quately addressed. Application instrumentation pro-

CMG99 Session 423, Reno, Nevada 7 December 8, 1999

vides the best measurement of the business transac-
tion (A-F) but now user think time (B-C and D-E) is an
issue. Client instrumentation provides a business
transaction view (A-F) only if the tool can distinguish
the end of the transaction (F) from the end on the in-
termediate screens (B and D). Wire Sniffing could also
provide good information because the application is
straightforward, and it should be relatively easy to
match the start and end network messages, although
multiple pages will increase the number of messages
and thus the complexity to match them correctly. All of
the techniques must be implemented at multiple
measurement points (i.e., I-J, O-P and S-T), and the
results correlated, if any of these components are used
by other applications (or other types of transactions in
the same application). Another issue that now must be
resolved is overlap in the sub-component response
times. Does the server S1 perform the tasks in series
or in parallel? In other words, is the response time I-J
the sum of K-L and M-N or the longer of the two? Al-
though this question doesn’t impact the data collected
at C1, it does have a great deal of influence on how
that end-to-end response time is interpreted.

4.3 Complex Web Application
One to several web pages (D1 and maybe D2 and

maybe D3) request services from multiple hosts
(middleware server S1, database server S2 and trans-
action system S3). The exact processing in each step
varies depending on the results of prior requests. The
customer sees a business transaction as a single web
function which may take more than one screen or page
(A-F), but it requires several web transactions (e.g., cgi
scripts, I-J), each of which invokes one or more IT
transactions (e.g., IMS and DB transactions, O-P and
Q-R). A real example of this type of transaction is the
FedEx web page to ship a package
(https://www.fedex.com/cgi-bin/ship_it/interNetShip?us).
This web page uses cgi scripts in conjunction with in-
house developed middleware to invoke an IMS trans-
action to check the status of the customer number
provided by the user, followed by other transactions to
other client/server application servers and to web da-
tabase servers.

Benchmarking is still reasonable but much more
complex even if the sampling and network subset is-
sues can be adequately addressed. The complexity of
the transactions means the scripts must also be very
complex, which greatly increases the probability that a
significant scenario will be overlooked. Application in-
strumentation provides the best measurement of the
business transaction (A-B or A-D or A-F), but user
think time (B-C and D-E) is still an issue. Client instru-
mentation provides a business transaction view (A-B or
A-D or A-F) only if the tool can distinguish the end of
the business transaction from the end on the interme-
diate screens, which is now more complex because it
can be the end of any of the dialogs (B, D or F). Wire
Sniffing is now extremely difficult because the applica-
tion is not straightforward. The complexity to match the

start and end network messages quickly becomes
overwhelming, although there are some tools that
claim to have the required level of sophistication. All of
the techniques must be implemented at multiple
measurement points (i.e., I-J, O-P and S-T), and the
results correlated, to understand the actual topology of
the application. The input data dependent nature of the
application behavior greatly increases correlation of the
data from these different measurement points. The
issue of overlap in the sub-component response times
increases with this level of application complexity.

4.4 COTS Applications
A COTS (Commercial Off The Shelf) application

provides a set of services implemented on middleware
servers, desktop clients or both. The middleware com-
ponent may also invoke transactions from other serv-
ices, such as legacy host databases or transaction
applications. Most of the issues are the same as stated
above in Section 4.3 for a Complex Web Application
but the commercial (and thus proprietary) nature of
these applications almost completely eliminates the
possibility of Application instrumentation. Although
many COTS vendors have announced support for the
ARM API, there has been little effort to coordinate the
techniques used for transaction identification across
multiple servers. This means that the ARM data from
the desktop cannot be correlated with the ARM data
from the middleware servers. Even if the desktop client
is in-house written, the COTS middleware component
may not accept a transaction identifier. There has been
some success with “wrappering” the application
(adding in-house written code both before and after the
COTS code to generate the measurement event), but
it is questionable if this technique is significantly more
effective than Client instrumentation.

4.5 Object Request Brokers
Object Management Group’s (OMG’s) Common

Object Request Broker Architecture (CORBA) and Mi-
crosoft’s Distributed Common Object Model (DCOM)
provide a client/server object and interface binding ar-
chitecture. Their objective is to shield client applica-
tions from server object details such as interface
binding and object location by writing an object once,
exposing its interface, and allowing it to be used over
and over without regard to its location. The very nature
of location hiding complicates application measure-
ment. Many of the vendors of Object Request Broker
(ORB) software claim to eliminate the need for appli-
cation measurement because the ORBs have already
been instrumented. Unfortunately, this provides in-
strumentation at the server (S1) and does not account
for the client portion of the response time (A-I and J-B).
In addition there are other unique issues involved with
measuring object environments. A single client can
invoke the same function (object) multiple times and
the request will be serviced by different servers each
time. Transaction routing may differ based on data

CMG99 Session 423, Reno, Nevada 8 December 8, 1999

sensitive business rules unknown to the client or even
the initial server.

The application topology shown in Figure 1 is not
sufficiently complex to represent a reasonable CORBA
application because the client component can actually
invoke services from multiple servers, such as S2 and
S3, directly. This complexity in routing make Wire
Sniffing almost impossible. Even if all the required
network segments could be adequately instrumented,
the effort to correlate the resulting data would be mas-
sive. Benchmarking suffers from a similar complication
of complexity. Because there are no client controls to
select how to route messages or which servers should
be used for a given function, the benchmark scripts are
unable to ensure that all components of the application
are measured. The issue of function reuse makes Ap-
plication Instrumentation much more complex because
the organization wanting the measurement may very
likely not have access to the source code to make the
modifications. Client Instrumentation tools may not
have the visibility into the client component to distin-
guish between different instances of the same dialog
used to drive different business transactions.

4.6 Summary
Unfortunately, the selection of which measure-

ment technique to use is not made easy by identifying
the type of application. A complex web application is
not better measured one way or another. The type of
information required drives the selection of the tech-
nique. For example, the need for client component in-
formation requires the use of a client component
measurement technique and eliminates the usefulness
of server-side measurement technique, regardless of
how robust it is. Once the measurement objective has
been identified, the appropriate technique, or combina-
tion of techniques, can be implemented.

5. Conclusion
The traditional view of application measurement is

evolving because of the desire to understand the im-
pact that application response time has on the overall
business. Applications designed to exploit a cli-
ent/server architecture greatly increase the complexity
of both the computer system configurations and the
applications themselves. Measurement of these appli-
cations is very complex and must focus on the busi-
ness result to avoid massive data collection and
analysis problems.

Where the application is measured is more im-
portant than how the measurement is implemented.
This top down approach starts with the business need
to determine what type of information is required and
then implements the measurement technique that both
provides that type of information and fits with the appli-
cation. If the business need is to understand the num-
ber of call center operators to hire, then the end-to-end
response time including user think time may be the
best metric to use. If the business need is to under-

stand the productivity of each of the call center opera-
tors, then the end-to-end response time excluding user
think time may be a better metric. If the business need
is to understand the server capacity required to meet
the planned call volume, then a combination of end-to-
end response time and IT transaction response time
may be required. In each case, once the business
need has been identified it becomes much easier to
determine where, and then how, to measure the appli-
cation.

The four application measurement techniques
presented (Application Instrumentation, Client Instru-
mentation, Wire Sniffing and Benchmarking) differ in
how they are implemented and their ability to collect
data at a given measurement point. Other factors, such
as accessibility to source code, the client operating
environment (i.e., Windows), or the cost of implemen-
tation, are significant in the selection of the technique
to use. The real problem arises when these factors
force the selection of a technique which, for the given
application, cannot be implemented at the measure-
ment points needed for business decisions. Knowing
the limitations at the beginning of the measurement
effort allows the selected technique to be adjusted to
meet the business needs. If such adjustment is not
possible, then the scope of the effort can at least be
reduced by eliminating some of the instrumentation
implementation and data collection that does not sup-
port the business requirements. When thinking of ap-
plication measurement, remember the axioms: “Just
because we should, doesn’t mean we can” and “Just
because we can, doesn’t mean we should.” Let the
business need be the force that drives both the desire
and the implementation of any application measure-
ment effort.

6. References
Knight, Alan and Jonathon Haworth. 1996. Self Instru-

menation - A Discussion of Requirements and
Approaches. In UKCMG, Proceedings: Com-
puter Measurement Group.

Lipovich, G. Jay. 1997. Fixing Capacity Planning’s
Achilles Heel: An Approach to Managing Fore-
cast Inaccuracy. In Computer Measurement
Group, Proceedings.

McBride, Doug. 1997. Performance Management of
the Desktop Client Fact or Fantasy? In Com-
puter Measurement Group, Proceedings.

Norton, Tim R. 1998. Don’t Predict Applications When
You Should Model the Business. In Computer
Measurement Group, Proceedings:922-933.
Anaheim, CA: CMG, Inc.

Ramanathan, Srinivas and Edward H. Perry. 1999. The
Value of a Systematic Approach to Measure-
ment and Analysis: An ISP Case Study. In
SIGMETRICS, Proceedings V24 N1:232-233.
Atlanta, Georgia: ACM.

CMG99 Session 423, Reno, Nevada 9 December 8, 1999

Smead, Steven. 1998. Service Level Instrumentation
101 - An in depth look at how to instrument
end user transactions. In Computer Measure-
ment Group, Proceedings.

Smith, Connie U. and Lloyd G. Williams. 1998. Per-
formance Engineering Models of CORBA-
based Distributed-Object Systems. In Com-
puter Measurement Group, Proceedings.

Thompson, George I., Javier Muñoz, and James K.
DeBruhl. 1997. The Availability & Quality of
SAP R/3 Workload Data For Performance /
Capacity Management Process Requirements.
In Computer Measurement Group, Proceed-
ings.

Tsykin, Mike and Christopher D. Langshaw. 1999.
End-to-End Response Time And Beyond: Di-
rect Measurement of Service Levels. Com-
puter Measurement Group Transactions (95):
41-48.

