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Abstract

The designs of computer applications are changing from single system designs to cross platform client/server
designs utilizing the features of different types of computers, operating systems and networks.  Modeling pro-
vides the necessary tools and techniques for planning the capacity of large computer installations using multi-
ple systems by constructing an enterprise view of the applications with an understanding of each of these areas
and the inter-relationships between them.

The “Simalytic” (Simulation/Analytic) Modeling Technique1 is a hybrid technique for planning the computer
system capacity requirements of complex multiple-platform computer applications by modeling at an enterprise
level.  This technique uses a general purpose simulation tool as an underlying framework and an analytic tool
to represent individual nodes when predicting capacity requirements for an application across an enterprise.
It combines both platform-centric tools (limited features but detailed platform information) and general pur-
pose tools (rich low level features) to address today’s large heterogeneous enterprises. This methodology takes
advantage of features in the different techniques (simulation vs. analytic queuing theory) as well as features in
the different tools (platform-centric vs. general purpose) by defining the interface between the simulation
framework and queuing theory node models.

                                                       
1SimalyticTM, Simalytic Modeling TM, Simalytic Modeling Technique TM and Simalytic Enterprise Modeling TM are trademarked by Tim R. Norton
All other trademarked names and terms are the property of their respective owners.

1. Introduction and General Background

Applications that once would have been imple-
mented as batch systems on a single computer are
now multi-platform on-line transaction processing
client/server systems with GUI (graphical user inter-
face) front-ends on PWS’s (programmable
work-stations) attached to departmental servers and
mainframe repositories. These new applications
utilize the features and services of different types of
computers (mainframe, mid-range, desktop) running
different operating systems connected by a variety
of communication network techniques (Hatheson
1995; Wilson 1994).

As applications move into this new client/server
world, how do we select the right systems at each

level and, once selected, how do we insure those
systems are the right size?  If any one of them is too
small the whole application will fail.  If any are too
big, the cost of running the application may exceed
the revenue it generates.  Neither is a very attractive
situation.

The objective of capacity planning is to find the
successful middle ground. Today, planning the ca-
pacity of large computer installations with multiple
systems requires an understanding of not only the
operating systems, the platforms, the clients, the
servers, the networks, the transaction systems, etc.,
but more importantly, the applications and the rela-
tionships between them. Once those relationships
are defined and understood, the application’s per-
formance can be assessed against the business ob-
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jectives and goals.  Projected business volumes are
then modeled to predict the capacity required to
meet those goals at future volumes.

There are many modeling tools and techniques that
address both performance and capacity for each of
the systems in today’s multi-platform environment
(Pooley 1995; Smith 1995).  The Simalytic Model-
ing technique provides a bridge across these existing
tools to allow the construction of an enterprise level
application model that takes advantage of models
and tools already in place for planning the capacity
of each system.

The major topics covered in this paper are:

• Section 1, Introduction and General Back-
ground, is a brief overview of modeling tech-
niques related to capacity planning.  An
expanded discussion of the topic can be found
in (Norton 1996).

• Section 2, Simalytic Modeling Methodology, is
a description of the methodology to be used,
which includes the mathematical foundation
behind the Simalytic Modeling technique, a
discussion of its application to address the is-
sues from Section 1 and some preliminary re-
sults.

• Section 3, Conclusion, is a discusses the impli-
cations of the results, the application of the
technique and areas of further research.

1.1 Capacity Planning

The capacity of a system can be measured many
different ways, depending on the business the sys-
tem supports.  Generally, the way a system is meas-
ured centers around the performance of one or more
of the applications.  The system “has enough capac-
ity” if everything is getting done when it is needed.
This may sound like a simplistic statement, but the
key to understanding the capacity of a system is the
definition of the performance objectives. (Domanski
1995 13; Rosenberg and Friedman 1984; Wicks
1989; Wilson 1994).  Therefore, capacity planning
is making decisions about the resource requirements
of a given computer system based on the forecasting
of future application performance using the goals
and expectations of the business.  What do we have
to buy and when do we have to buy it to make sure
that the applications that run the business perform at
the level required to insure the business succeeds?

1.2 Transaction Based Applications

Although there are still many important batch appli-
cations, this discussion will center around transac-
tion based applications for several reasons.  First,
the multi-platform client/server systems are gener-
ally focused toward small real-time units of work
such as transactions rather than the large long-
running units of work associated with batch.  Sec-
ond, large batch applications generally have long
execution times and points-in-time when all work
must be completed.  It just doesn’t matter when a
third of the paychecks are printed;  they all must be
ready when the time comes to distribute them.
Third, batch workloads have a much lower arrival
rate, often once a day or less, and tend to be serial-
ized.  Fourth, transaction based applications are
much more sensitive to the demands of momentary
peak loads where batch based applications are more
sensitive to scheduling issues and interference from
higher priority workloads.  Therefore, the traditional
single system view will continue to provide ade-
quate performance and capacity planning for batch
workloads where transaction workloads require a
more enterprise view to understand the relationships
between responsiveness as a whole and the individ-
ual platform resource requirements.

What is a transaction? Transaction processing sys-
tems, often referred to as OLTP (On-Line Transac-
tion Processing), allow the end-user to enter a
relative small independent unit of work into the
system and receive some information as a response
in near real-time.  Transactions, which can be de-
fined from different points-of-view, include entering
an order at a terminal (business transaction), an SQL
command (database transaction) or some keystrokes
followed by a carriage-return (interactive transac-
tion).  In one sense, each keystroke a user types in a
text editor is a transaction  because  a small unit of
work (the keystroke) is sent to the sever, acted upon
and information is returned to the user (the key-
stroke is echoed). A transaction might be defined as
messages received from or sent to 3270 terminals
(which were really early PWS’s) by an OLTP sys-
tem such as CICS or IMS or as logical units of work
marked by “commit” commands by database sys-
tems such as Oracle and Sybase (BGS 1996).

The concept of a transaction is important because it
is meaningful from the end-user’s point-of-view.
Transactions can be counted to establish load (e.g.
arrival rate)  and measured to establish performance
(e.g. response time).  The responsiveness of the
transactions associated with an application deter-
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mine if that application meets the needs of the busi-
ness.  A customer service representative can answer
more inquiries more effectively when the requested
information is presented in one or two seconds than
if it is presented in ten or twenty minutes.  Modeling
techniques can then be used to predict application
responsiveness at higher transaction rates.

1.2.1 Client/Server Environment

Figure 1 The "Client/Server" System shows a hypo-
thetical client/server environment to illustrate the
problem of modeling application performance.
Which techniques and products are chosen doesn’t
matter, but what is important is understanding that
any of the client applications on any of the PWS’s
can, and will, send transactions to several of the leg-
acy applications to provide
the end-user a screen of
complete and interrelated
information.  For example,
the Order Entry user may
type in the name of an exist-
ing  customer and get not
only their address but any
pending or past orders and
the status of their account.
This may provide better
service, but it also causes
transactions to be sent to
each of the other systems.

Capacity planning in a cli-
ent/server environment is
much harder than in a single
computer environment.  In
the example above, if the

Shipping workload outgrows the Unix system, it can
impact the responsiveness of the Order Entry trans-
actions.  In addition, growth in the Order Entry
workload will now impact the Unix system, but only
if the orders are from existing customers.

Modeling in this environment is truly a challenge.
Each of the systems require a different knowledge
base and expertise (Gunther 1995; Hatheson 1995).
None of the systems can be modeled independently
because the transaction arrival rate for one system
may be dependent on the response times of the oth-
ers. Figure 2 An Enterprise Model shows a very
simplistic model for each of the major areas of a
client/server application and, although it only shows
a single server, the interdependence is evident.  The
responsiveness of one part of the model (server, cli-
ent or network) will have an impact on the other
two. In a more realistic application the software on
the client PWS could issue transactions to several
servers (request everything about customer #123) or
it might issue them in series and have to wait for
one response before sending the next (request Jones’
customer number; then request everything about that
number).  While the former situation will cause the
instantaneous peaks to synchronize on all of the
servers; the latter will slow everything down as one
of the servers becomes overloaded and its response
times increase.  “While it is important to be able to
model specific UNIX or NT hardware, the problem
we face is modeling the environment that has a di-
verse collection of hardware, operating system, da-
tabase management system, and network hardware.”
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(Domanski 1995).

1.3 Modeling Capacity Projections

The use of models to assess and predict the per-
formance of computer systems is not new.  Capacity
planning has always relied to some extent on model-
ing because of the need to predict future require-
ments. A capacity planner can analyze the
workloads and make predictions based on experi-
ence or simple trending.  Models can be constructed
to understand how an application functions without
any intention to predict future performance.  The
area of interest here is the intersection of the two
fields; models used to predict capacity requirements
based on performance expectations.  Each of the
models in Figure 2 is well defined, but when taken
as a whole, the complexity rises quickly as addi-
tional servers and clients are included in the model.

1.3.1 Approaches to Capacity Planning Model-
ing

The approaches to capacity planning range from the
application of rules-of-thumb to full scale bench-
marks of the application or system (Brunetto 1984;
Gilmore 1980; Hanna 1988; Mills 1991).  Figure 3
Capacity Planning Approaches shows the relation-
ship between these approaches. (This figure is not to
scale; no meaning should be inferred about the abso-
lute level of either axis, only that the relative posi-
tion of an item implies some amount more than an
item to the left or below.)  Business Analysis
(Rules-Of-Thumb) and Trends (Linear Projections)
rely on historical analysis and the assumption that
future performances is a direct extension of past
performance.  Benchmarks can be the most accurate
because they actually implement the applications,
but at the greatest cost.  Modeling is the middle
ground between the high cost and effort of bench-

marks and the low prediction ability of trends.

1.3.2 Response Time Modeling

The key to the capacity planning methodology dis-
cussed so far is the ability to predict the perform-
ance of a future workload given a desired system
configuration.  As applications move more towards
being transaction based, the definition of application
performance becomes centered around transaction
response time.  For this reason, modeling the trans-
action response time of a application is crucial to the
ability to predict the future performance of that ap-
plication.

There are two basic modeling techniques used for
computer performance modeling:  simulation and
analytic queuing theory (Kobayashi 1981; Menascé,
Almeida, and Dowdy 1994).  Either of these tech-
niques will build a model that represents the major
components of the computer system to be modeled.
A third technique, hybrid modeling, is the combina-
tion of both simulation and analytic techniques in a
single model (Kobayashi 1981).

1.4 Modeling Tools

In addition to the choice between analytic and
simulation tools, the capacity planner or perform-
ance analyst has the choice between platform-centric
and general purpose tools.  The basic difference
between these two groups is the problem set the
tools were designed to address.

1.4.1 Platform-Centric

Platform-centric means that the tool contains de-
tailed information about the platform, but does not
allow more than one platform to be modeled at a
time.  A platform-centric tool would include infor-
mation about the number and type of processors for
each model of a system build by a given vendor
(e.g. an IBM 9021-982 has eight processors @ 60
MIPS each).  Platform-centric models are generally
easier to build because they are made of “building
blocks” already defined to the tools and the relation-
ships between them are fully understood by the
model.  However, these tools cannot be used to
model an environment not built into the tool.  For
example, a tool with the above “building blocks”
could not be used to model Unix running on an HP
system.  Although many platform-centric tools al-
low the user to define new servers with new per-
formance characteristics, they generally do not
provide large libraries of device and system defini-
tions dramatically different from the supported plat-
form.  Platform-centric tools are generally
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implemented using analytic or queuing theory
modeling techniques and process performance and
configuration data collected from existing running
systems.

1.4.2 General Purpose

General purpose means that the tool contains the
features to allow the user to model anything they
would like to build, but with little or no “built-in”
understanding of any given platform.  These tools
are used to model more than just the hardware, in-
cluding such things as the design of an application,
traffic flows and communications networks.  Using
the example above, the model builder would have to
understand the design of the IBM 9021-982, how
the eight processors communicate, and what is in-
volved in completing a unit of work within the op-
erating system.  The modeler using a general
purpose tool would be required to either build a sub-
model to simulate the underlying architecture or to
determine a delay value to use whenever the event
happened.  Simulation of the architecture is much
more accurate but also much more difficult and time
consuming, and may require information the model
builder does not have.  Although many general pur-
pose tools provide libraries of sub-models for a va-
riety of systems and devices, they generally do not
provide the required level of granularity, being ei-
ther too general or too detailed for the situation.
Building the relationships between the submodels is
generally part of the overall model construction and
may require an in-depth understanding of all of the
submodels used. General purpose tools are gener-
ally implemented using simulation modeling tech-
niques.

1.5 Hybrid Modeling

A hybrid modeling technique as a combination of
both simulation and analytic queuing theory.  The
reasons for using a hybrid technique for capacity
planning modeling are fundamentally the same as
for other areas that have turned to hybrid tech-
niques:  accuracy improvement and cost reduction.
By merging the best features of the two techniques,
along with the use of existing modeling tools, the
capacity planner can produce a more accurate model
with less effort and lower processing requirements.

2. Simalytic Modeling Methodology

 “Simalytic” (Simulation/Analytic) Modeling is a
hybrid modeling technique.  The methodology uses
a general purpose simulation modeling tool as a
underlying framework and an analytic modeling tool

(or the results thereof) to represent the individual
nodes or systems.  The problem addressed by Sima-
lytic Modeling is at the intersection of several areas:
capacity planning, modeling (both simulation and
queuing theory), client/server transaction processing
systems, and commercial tools (both general pur-
pose and platform-centric).  The goal of a Simalytic
Model is to predict the capacity requirements of an
application executing on heterogeneous computer
systems by creating an enterprise level application
model.

There are two key differences between the existing
modeling tools and the Simalytic Modeling tech-
nique.  The first is the ability to use the results from
not only a different tool, but a different modeling
technique altogether, as a submodel within an enter-
prise model.  The second is the ability to use the
results from tools or techniques already being used
to model individual nodes in the system.  These dif-
ferences reduce the time and effort to build an enter-
prise level model by using the results from
commercially available platform-centric tools or
existing detailed application models.

2.1 Methodology

Simalytic Modeling brings together existing per-
formance models and application information.  One
of the problems with queuing theory is the reliance
on averages, such as average response time, average
service time and average arrival rate. These models
are generally more efficient to execute than simula-
tion models, but, because of the use of averages that
normalize all activity for each server in the model,
they are often less accurate.  The goal of Simalytic
Modeling is to model the application over longer
periods of time to understand the application dy-
namics without increasing the error due to greater
variation in the data items used for the above aver-
ages.  When using commercial queuing theory tools,
it is generally understood that shorter intervals2

usually produce better model results because there is
less variation in the measurement data. The node
model can produce very accurate response time
predictions when built with a queuing theory tool
using a short data collection interval to minimize the
variability in the data.

                                                       
2 In this context, ‘interval’ refers to the time period for which meas-
urement data was collected to be used in building a model.  Interval
selection is the analysis of all available measurement data to deter-
mine the interval that is most representative of the application situa-
tion to be modeled.
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Exponential interarrival time distribution (also re-
ferred to as Poisson arrival distributions is used be-
cause it is generally considered to most closely the
actual arrival patterns in transactions systems
(Buzen and Potier 1977).  An additional advantage
is that the arrival rate at a server from multiple
sources is the sum of the arrival rates generated by
each source and that the arrival rate at one of multi-
ple servers from a single source is the original rate
times the probability that server will be selected,
which allows the consolidation of servers.  Expo-
nential service time distributions are also useful be-
cause of the Markov or “memoryless” property (the
service delivered to one customer does not predict
the service that will be delivered to the next) (Allen
1978; Allen 1990, p. 255; Kobayashi 1981, p. 103-
5; Pooch and Wall 1993, p. 342-3).  Trace-driven
simulations are of more use in capacity planning and
performance modeling because they remove one
major issue in model construction; transaction arri-
val distribution.  The increase in arrival rate to rep-
resent the growth of a workload is based on the
current arrival rate and distribution.

Regardless of the underlying technique used in the
simulation tool, there are two important characteris-
tics of these tools that make them well suited to be
used as the framework in Simalytic Modeling.  The
first is the ability to maintain the identity of each
transaction, and its associated attributes, throughout
the entire model and have the model react to these
attributes.  The second is the ability to preserve the
specifics of the interarrival times between individual
transactions.  Even though Poisson distribution is
accepted as generally the most representative in
models of these types of systems, other distributions
can be used if analysis of the trace data shows an-
other distribution to be more appropriate.

Simalytic Modeling is based on a hybrid technique
that allows the models to use the best features of
each tool. The concept of  submodels allows each
part to be represented by a different technique.
Submodels are supported by most of the commer-
cially available modeling tools, but with varying
abilities to utilize completely different techniques in
the submodel. Submodels are a key concept because
they allow some part of the model to be replaced
with a different model as long as it provides appro-
priate functionality and results; similar to the FESC
(flow-equivalent service center) decomposition
technique discussed in (Menascé, Almeida, and
Dowdy 1994).

2.1.1 Methodology Assumptions

Simalytic Modeling is not a technique for collecting
data or measuring systems or applications.  There
are several underlying assumptions that must be true
before the Simalytic Modeling technique can be
used:

• Each workload to be modeled must be consis-
tently defined across all of the models used.

• The application details must be understood at
the enterprise level, which includes transac-
tion arrival distributions.

• A valid model (proven to produce accurate
predictions) must exist for each system or
node to be included in the application enter-
prise model.

• The simulation tool selected for the enterprise
model framework must support submodels,
must be able to invoke external functions and
must support the modeling of individual
transactions.

2.1.2 Methodology Process

Once the model builder has all of the fundamental
information, she can construct an enterprise level
model.  The simplest way to do this is to construct a
very high level simulation model of the enterprise
where each system is a single server capable of
some amount of parallelism defined by the architec-
ture of each system and of the application.  Then,
instead of using a pre-defined service time, each
server would use a transformation function that
maps the transaction arrival rates to service times.
In the enterprise model the service time and the re-
sponse time for each server will be the same because
the queue time is accounted for in the response time
data for the server. Each node in the simulation
model must allow enough parallelism to avoid
queuing to enter the node.

Continuing with the same example, some number of
the Order Entry transactions would be routed to the
Shipping server.  Assume it has been determined
that Shipping can provide a response time of one
second when arrivals are less than three per minute
and a response time of two seconds when arrivals
are more than three per minute. When the Order
Entry transaction rate increases such that more than
three per minute are sent to Shipping, the response
time will jump from one to two seconds.  This is an
overly simple example, but it illustrates the point.
The increased service time at Shipping will cause
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the overall response time for those transactions to
increase, which will be seen as a longer average re-
sponse time or reduced through-put for the applica-
tion.

Figure 4 Simple Application Model shows a dia-
gram of this model.  The response time is measured
from Arrivals to Departures, either through the
Shipping node or around it.  If there is a limit on the
number of transactions that can be active in the Or-
der Entry system at any given time, then there could
be some queuing to get into the system.  This ex-
ample shows how the Simalytic Model connects
what is happening in the application on the different
servers.  If the Order Entry system is modeled by
itself, the workload representing the long (Shipping)
transactions would not reflect the increased response
time due to the load at Shipping.  Because of the

additional application information in the Simalytic
Model, it could adjust the service time in the Order
Entry server by replacing the measured wait time
component of the response time
with the projected delay from the
Shipping server.

The question is “how does the
Shipping server know what arri-
val rate to use for a single trans-
action?”  The arrival rate must be
calculated for each transaction
based on how long it has been
since the prior transaction (the
transaction interarrival time).  If
the interarrival time is less than
20 seconds, then the arrival rate
to account for that interarrival
time would have to be greater
than three per minute.  If the in-
terarrival time is longer than 20
seconds, then the arrival rate

would have to be less than three per minute.  There-
fore, knowing the interarrival time between each
pair of transactions, the model can calculate the
pseudo-arrival rate at each server.  As shown in
Figure 5 Shipping Transaction Arrivals, when the
transaction arrivals are close together the response
time is high and when the arrivals are further apart
the response time is low.

The next step is to analyze the model using the
business objectives.  Assume that the manager of
the Order Entry department has requested a model to
determine when the Order Entry system will need to
be upgraded in order to maintain the required re-
sponse time of less than 1.7 seconds. The arrival rate
is assumed to have a constant increase over the next
18 months (the scope of the analysis) and the per-
cent of the Order Entry transactions must also query
the Shipping system is assumed to be 30%. The re-
sponse time goal for the Shipping system is less
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than 10 Seconds (because these transactions gener-
ally do not involve a waiting customer) and this re-
sponse time is acceptable.  The objectives of the
analysis are to answer two questions: “When does
the Order Entry system fail to meet the business
response time goal?” and “What will fix the prob-
lem?”.

Figure 6 Model Results Analysis shows the hypo-
thetical results of this example model.  When each
of the systems are analyzed independently, neither
of the response times ever approach the business
goal of 10 seconds for the Shipping transactions and
1.7 seconds for the Order Entry transactions.  How-
ever, when the relationship between Shipping and
Order Entry is added to the chart in the form of re-
sults from a Simalytic Model, the revised Order En-
try response times show that system will need to be
upgraded by year end, well within the scope of the
analysis.  In addition, the ‘fix’ to the problem is to
upgrade the Shipping system, which never exceeds
its response time goal.  The Simalytic Model allows
the analyst to see the impact of relationships that,
although known, may not be full appreciated.

2.2 Foundation

The queuing theory mathematical formula for the
average response time (T) of transactions in a simple
single-server analytic model is shown in Equation 1
Analytic Response Time Formula from (Menascé,
Almeida, and Dowdy 1994, p. 108) where S is the
average time spent at the server and λ is the average
arrival rate of transactions.  A detailed description of
this formula and its application can also be found in
(Buzen 1984).

The mathematical formula to estimate the average
response time (T ) of transactions in a simple single-

server simulation model is shown in Equation 2
Simulation Response Time Formula from (Menascé,
Almeida, and Dowdy 1994, p. 108) where Ti is the
response time of the ith transaction and nt is the total
number of transactions that visited the server during
the simulation.

The Simalytic Modeling technique combines these
two mathematical formulae into the Simalytic
Modeling formula shown in Equation 3 Simalytic
Response Time Formula. As the framework for a
Simalytic model is a simulation model, we start with
the simulation response time formula shown in
Equation 2.  The server time from each iteration (Ti)
is replaced with a transformation function f (λi),
where i is the iteration and λ is the arrival rate per
second calculated from the interarrival time by di-
viding the number of simulation clock ticks per sec-
ond (b) by the difference in the simulation clock
value for the current iteration and the prior iteration
(ci - ci-1) as shown in Equation 3.

The transformation function f  is based on the results
of the analytic response time formula similar to the
one in Equation 1, either directly or indirectly, and
represents whatever is required to return the correct
response time for each given arrival rate.  It may be
a known and understood formula, as in the case of
Equation 1, or it may be the results derived from
proprietary algorithms implemented in a commercial
tool.  Directly means that the simulation modeling
tool would invoke a submodel to calculate and re-
turn the response time based on λ.  Indirectly means
that the analytic formula has been invoked at some
other time for some subset of the expected values
for λ and the response times placed in a look-up
table.  The simulation model then invokes a sub-
model that returns the response time for the closest
λ found in the table.

Equation 1 Analytic Response Time Formula
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Equation 2 Simulation Response Time Formula

T
T

n
ii

n

t

t

= =∑ 1

Equation 3 Simalytic Response Time Formula
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=
−

=

−
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where  =  arrivals per second as:

where c =  simulation clock value
and b =  simulation clock ticks per second
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Figure 7 Interarrival Time Example shows an ex-
ample of how the arrival rate can be calculated from
the interarrival times between transactions.  The i th

transaction (ti) arrives at the clock value of cj where j
is the clock counter, but as it is the clock value for
the i th transaction, it is also referred to as ci.  The
arrival of the prior transaction (ti-1) is at ci-1 (or cj-3).
Therefore, the interarrival time for ti is iri, which
starts at the prior arrival (ai-1) and is calculated as the

clock value at ai (ci ≡ cj) minus the clock value at ai-1

(ci-1 ≡ cj-3) which is three.  If there are six clock ticks
per second, then 6/3 = 2, or an arrival rate of two
transactions per second. The same process is used to
calculate the pseudo-arrival rate for ti+1.  The clock
value at ai+1 (ci+1 ≡ cj+2) minus the clock value at ai

(ci ≡ cj) which is two.  At six clock ticks per second
6/2 = 3, or an arrival rate of three transactions per
second.

Once the arrival
rate is calculated,
the transformation
function (f) is
called with the
rate for that trans-
action (λI), two in
the first case and
three in the sec-
ond..  The func-
tion will
approximate the
results of the
queuing theory
formula Equation
1 Analytic Re-
sponse Time Formula to a greater or lesser degree,
depending on the complexity designed into f.

Figure 8 Simalytic Function shows a stylized view
of the relationship between this function (the short
broken line) and the results of Equation 1 (the solid
line) and the results a of series of simulations at dif-
ferent arrival rates (the long broken line).

The calculation of the arrival rate for the queuing
theory submodel is a key principle to Simalytic
Modeling because it provides the bridge between
the two types of models (simulation and queuing
theory).  One of the assumptions for Simalytic
Modeling (see section 2.1.1 Methodology Assump-
tions) discusses the importance of using only re-
sults from validated node models in the Simalytic
Model.  The ability to use the pseudo-arrival rate
calculated from the transaction interarrival times
between each pair of transactions is valid because
the queuing theory models for each node has al-
ready be proven to produce acceptable predictions
using those arrival rates and the function used for
the server service time is a transformation function
between the two valid models.  The arrival rate
calculated from the interarrival time is really a way
of obtaining the arrival rate that would cause the
given interarrival time in a steady state.  Using that
arrival rate will already be validated as part of the
construction of the node level model.

Even assuming a best case situation where the inter-
arrival times of the actual transactions are uniform
(no variation), there would still be variation in the
response times due to variation in the workload
(different transactions, different calculations, differ-
ent logical path, etc.) and due to variations in the
device service times (CPU cache and pipeline, disk
cache and rotation, interference form higher priority
workloads, etc.).  When using any queuing theory
model, it must be accepted that the predicted results
represent an average based on the average of each of
the parameters over the data collection interval.
This is similar to the FESC (flow-equivalent service
center) decomposition technique discussed in
(Menascé, Almeida, and Dowdy 1994), used for
solving complex queuing theory models.  The sys-
tem to be modeled is divided into parts that can each
be analyzed and solved independently.  Each part is
then replaced with a single server that is representa-
tive of the flow through that part of the system.  One
of the main points in each of the discussions
(Menascé, Almeida, and Dowdy 1994, p. 163-7 and
236-9) is that the FESC must be solved independ-
ently and must maintain the ‘flow’ of the overall
model (i.e. the behavior of each FESC must be al-
most indistinguishable from the subsystem it re-
places).  The subsystem model is solved to obtain

j-4 j-3 j-2 j-1 j j+2 j+2 j+3
Simulation Clock (c j )

t i-1

t  i+1

t  iir  i

ir i+1

a i-1 d  i-1

a i

a i+1

d  i

t=transaction, a=arrival,  d=departure, ir=interarrival time

Figure 7 Interarrival Time Example
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Figure 8 Simalytic Function
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the subsystem throughputs as a function of multi-
programming level (for closed models) or the sub-
system response times as a function of arrival rate
(for open models).  The FESC is then substituted for
the subsystem in the overall model using the func-
tion to describe the subsystem’s behavior.
(Menascé, Almeida, and Dowdy 1994, p. 236) cites
(Chandy and Sauer 1978) that the flow-equivalent
method yields exact results when applied to closed
single class product form models and cites (Cortois
1975) that little error is introduced if the transition
rate within the submodel is much greater than the
interaction rate between the submodel and the
overall model (which will necessarily be the case
when the submodel represents an entire independent
system or node).

Equation 3 only calculates the response time for a
single workload on a single server.  The response
times for additional workloads and servers would be
calculated the same way. The average system re-
sponse time could then be calculated by adding the
response times together based on the probability of
each workload visiting each server.  As can be seen
by this simple example, the calculations will quickly
grow out of hand.  To avoid this, the Simalytic
Modeling Technique uses existing simulation and
queuing theory tools together to implement a Sima-
lytic Model.  In addition, the simulation tools allow
transactions to be assigned attributes that can con-
tain application design information not available in
the measurement data.

2.3 Preliminary Results

The preliminary results were produced using Math-
CAD to implement the both the queuing theory
formula and the simulation results.  These graphs
were generated using an exponential distribution of
service times around the average shown because this
more closely matches the M/M/1 queuing model.
The QRT function is an implementation of Equation
1 Analytic Response Time Formula.  The SrvRTime
function is an implementation of Equation 3 Sima-
lytic Response Time Formula.  The CurvFt function
is the result of fitting a curve to the average results
of actual simulations for each arrival rate.  The
simulation builds an array of response times at 50
different arrival rates between .1 and (1/service
time)+.1.  The average for each different arrival rate
is then plotted and a curve fit to the points.  Graphs
are shown for two different service times; graphs at
other service times produced similar results.

The graph in Figure 9 shows the correlation be-
tween the three techniques at a service time of .1

seconds.  The step function in the response times for
the Simalytic function is larger than desired because
of the simplistic nature of the MathCAD implemen-
tation.  It can be minimized to the extent desired by
increasing the number of steps.

The graph in Figure 10 shows the correlation be-

tween the three techniques at a service time of .2
seconds.  Again the three track nicely.  The little dip
in the simulation line comes and goes with each
recalculation of the random number generator for
the distributions of service times.

3. Conclusion

Capacity planning for single-platform computer
systems has developed over the years into a well
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Figure 9 Response Time Comparison for Serv-
ice Time of .1 Seconds
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disciplined field, but only if the input parameters
and goals are well defined.  Predicting the resource
requirements in a client/server environment is pos-
sible, but again, only if the input parameters and
goals are well defined.  Applications designed to
exploit a client/server architecture greatly increase
the complexity of both the computer system con-
figurations and the applications themselves.  Predict-
ing the responsiveness of those more complex
applications requires a more complex modeling
methodology.

Modeling an application at the enterprise level re-
quires an understanding of the applications and
measurements of the transaction response times.
Different modeling techniques (simulation, analytic
queuing theory or hybrid) and different modeling
tools (platform-centric or general purpose) can be
used to predict transaction response times for indi-
vidual systems or nodes.  But none of these can be
used alone to produce a detailed enterprise level
model at a reasonable development cost.  The ex-
pense, time and effort to plan the required future
capacity of a system must be substantially less than
the cost that is being avoided.  It has been possible
to devote a great deal of time, effort and money to
capacity planning in the mainframe arena because
the equipment costs to be avoided were so very
large.  The lower equipment costs and scarcity of
experienced planners in the distributed environ-
ments have often made the cost to be avoided less
than the cost of planning.  Unfortunately, both of
these situations are changing as mainframe equip-
ment costs spiral down and client/server complexi-
ties push the enterprise costs up.  The cost to be
avoided may still be too small to justify the effort,
but the key is finding where the real problem is.
Adding equipment that fixes several non-problems
quickly changes the equation in favor of effective
capacity planning.

 Simalytic Modeling can be used to take advantage
of existing application and system models to reduce
the time and effort to produce detailed enterprise
level models. Using this technique will both im-
prove the understanding of the application as well as
identify which systems require more detailed analy-
sis and which systems will continue to meet the
business needs without additional equipment. The
implementation of the technique using any of the
many existing tools not only protects the investment
an organization has made in tool acquisition and
training, but it also will reduce the time and effort to
produce a model that will predict the impact of
business growth on the entire enterprise.

3.1.1 Future Research

The author is currently developing a modeling tool
that will be built on a simulation framework and
implement the results of a queuing theory model as
a Simalytic Modeling function.  This tool will allow
someone interested in predicting the performance of
an application based on the anticipated growth in
business transactions to construct a simulation
model of the application using the results of some
other technique to control the service times at each
node.

{NOTE TO REVIEWER:  This tool should be at
a demonstrable stage when this paper is pre-
sented.  Additional results will also be included in
the camera ready paper.  The background paper
(Norton 1996) will be published in December
1996.  It and other related work (both published
and unpublished are available at the author’s
web site: http:\\www.simalytic.com.}
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