

#### **Sysplex Modeling:** Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

Tim R. Norton, Sr. Staff Member

Information Technology networkMCI Services 2424 Garden of the Gods Road Colorado Springs, CO 80919

(719) 535-1163 Tim\_R\_Norton@mcimail.com

# Agenda

2

Sysplex Modeling: Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

- Background
- The Buffer Access Problem
- Modeling the Problem
- The Model
- Results
- Conclusion

# Background

#### **Sysplex Modeling:**

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

#### Processor

- Contains One or More CPU's (Engines, IP, CP, x-way, etc.)
- Shared Memory
- IBM CEC Central Electronic Complex

#### Growth

- Make Each CPU Faster
- Add More CPU's
- Connect Multiple Together
  - IBM Sysplex
  - IBM PTS Parallel Transaction Server

# Background

#### **Sysplex Modeling:**

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

# Coupling Facility

- Inter-connect Large Number of Processors
- Part of IBM S/390 Parallel Sysplex
- High Speed Fiber-Optic Links
- Memory Holds Different Structures
  - Cache
  - Lock
  - List

# Background

#### **Sysplex Modeling:**

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

#### Data Base Systems

- Optimized for the Current Environment
- Data In Memory to Reduce I/O Times
- Data Shared by Multiple Transactions
- Data Shared by all CPU's in the Processor
- Share Data Across Processors
  - Use Coupling Facility for:
    - Locks
    - ✓ Cache





# **Sysplex Modeling:**

# The Buffer Access Problem

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

#### Overview

- What Causes It?
  - Moving Applications
  - One Processor to Several Processors
  - Response Time Critical Transactions
  - Highly Optimized Workloads
- Potential Environments
  - IBM PTS
  - Client/Server
  - "Getting Off the Mainframe"

#### The Buffer Access Problem

**Sysplex Modeling:** 

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

#### • Elements of the Problem

- CPU Size
  - Impact of Smaller CPU's
  - Single I/O Can Equal 10,000's Instructions
- Buffer Hit Ratio
  - Hits vs. Misses
  - Locks vs. Cache
- Transaction Routing What to Optimize
  - Locality of Reference
  - Processor Utilization

#### The Buffer Access Problem

**Sysplex Modeling:** 

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

#### Details

- What Can Happen
  - Buffer Hit
  - Buffer Miss / Cache Hit
  - DASD Access
- What Causes Buffer Misses For Already Read Records
  - Time LRU'ed Out
  - Update Current Copy Invalid
  - Routing Not in Shared Memory
- Drivers
  - Locality of Reference
  - Number of Processors
  - Read/Write Ratio
  - Memory Size

# The Buffer Access Problem

**Sysplex Modeling:** 

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

#### Not Considered

- Lock delays
- Enqueue delays
- Queuing Caused by Smaller CPU
- Security
- Logging

# Modeling the Problem

# **Sysplex Modeling:**

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

#### Overview

- Large Changes in the Environment
- Many Drivers of Change
- Potential Impact is Large
- But Impact Could be Minor
- Application Changes Required?
- Which Configuration Works Best?

# Modeling the Problem

#### **Sysplex Modeling:**

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

#### • Example

- Hypothetical System
- Transaction Response Time Example
  - CPU Time: .005 seconds
  - Data Base Accesses 100
    - ✓ Buffer hit: .0001 seconds
    - ✓ Buffer miss: .0300 seconds

#### Total Response Time

- From 0.015 seconds (.005 + 100\*.0001)
- To 3.005 seconds (.005 + 100\*.03)

#### Instructions Executed in the Time of an I/O

- 60 MIPS CPU
- 1.8M Instructions (60,000,000 \* .03 = 1,800,000)

#### What Model to Use?

#### **Sysplex Modeling:**

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

#### Analytic Model

- Deals With Averages
- Assumes Homogenous Transactions
- Generalized Cache Management Algorithms
- Transaction Order Not Preserved

#### Simulation Model

- Describes Individual Behavior
- Impact of Outliers
- LRU Cache Management Algorithms
- Transaction Order Preserved
  - Routing
  - Buffer Invalidation

# **Designing the Model**

Sysplex Modeling:

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

#### • Variable Number of Processors

- Use One Processor to Calibrate Model
- Use More to Investigate Changes

#### Control Over Buffer Locality of Reference

- How to Identify the Buffer Accesses per Transaction?
- How to Describe Locality of Reference?

#### Processor Memory Size

One Large vs. Many Small

#### Transaction Profiles

What Makes Transactions Different?

# **Using the Model**

#### **Sysplex Modeling:**

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

#### • What Should It Do?

- Response Time Predictions
- Buffer Hit Ratio Predictions
- Processor Memory Sizing

#### • What are the Benefits?

- Additional Processors Analysis
- Data Base Re-design Analysis
- Additional Memory Analysis

#### What are the Problems?

- Data Collection: Which Buffers Does a Transaction Use?
- Routing Techniques: Queue Length, Tran Content, Other?

# **Modeling Tool**

#### **Sysplex Modeling:**

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

#### Simulation Tool

#### Simul8 from Visual Thinking International Ltd

- General Purpose
- GUI Interface
- Links to Excel and Visual Basic
- Animation Display
- Inexpensive

#### **Sysplex Modeling:**

Simul8 Model

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses



# Current State of the Model

**Sysplex Modeling:** 

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

#### Current Features

- Hit Ratio Controlled by Transaction Type
- Arrival Rate and Distribution by Transaction Type
- Service Time by Transaction Type
- Some Routing Choices

#### Investigate Extremes

- Identify Areas For:
  - Additional Research
    - Application Understanding
    - Sysplex Understanding
  - Model Development
    - What to Implement Next

# **Model Assumptions**

**Sysplex Modeling:** 

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

#### • Buffer Hit Ratio

- Shared Memory System (Big CEC) 98.5%
- Distributed Memory System (PTS) 90.0%
- Processor Speed
  - PTS = Big CEC / 3

#### Transaction Service Time

- Long = x \* Short
- x = 5, 10 or 15 (depending on the run)

#### No Parallelism

Single Transaction Active at a Time



21 Copyright © 1996, MCI Telecommunications Corporation



# **Model Runs**

#### **Sysplex Modeling:**

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

#### Run Groups

- PTS Sysplex with Shortest Queue Routing (SQ)
- PTS Sysplex with Circulate Routing (C)
- Single Big CEC (B)

#### • Three Long Transaction Service Times

- 15 Time Units
- 10 Time Units
- 05 Time Units
- Nine Total Runs
  - Each Long Transaction Service Time for Each Group
  - Run Name: M<15/10/05><SQ/C/B>

# **Model Parameters**

#### **Sysplex Modeling:**

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

|                  |                   | Run: | M15SQ      | M10SQ      | M05SQ      | M15C      | M10C      | M05C      | M15B    | M10B    | M05B    |
|------------------|-------------------|------|------------|------------|------------|-----------|-----------|-----------|---------|---------|---------|
| Model Parameters |                   |      |            |            |            |           |           |           |         |         |         |
| Run              | Time              |      | 1000       | 1000       | 1000       | 1000      | 1000      | 1000      | 1000    | 1000    | 1000    |
| Long             | Trans             |      |            |            |            |           |           |           |         |         |         |
|                  | Interarrival Time |      | 10         | 10         | 10         | 10        | 10        | 10        | 75      | 75      | 75      |
|                  | Std               |      | n/a        | n/a        | n/a        | n/a       | n/a       | n/a       | n/a     | n/a     | n/a     |
|                  | Distribution      |      | Neg Exp    | Neg Exp    | Neg Exp    | Neg Exp   | Neg Exp   | Neg Exp   | Neg Exp | Neg Exp | Neg Exp |
| Shor             | t Trans           |      |            |            |            |           |           |           |         |         |         |
|                  | Interarrival Time |      | 1          | 1          | 1          | 1         | 1         | 1         | 1       | 1       | 1       |
|                  | Std               |      | n/a        | n/a        | n/a        | n/a       | n/a       | n/a       | n/a     | n/a     | n/a     |
|                  | Distribution      |      | Neg Exp    | Neg Exp    | Neg Exp    | Neg Exp   | Neg Exp   | Neg Exp   | Neg Exp | Neg Exp | Neg Exp |
| Workload Mgr     |                   |      |            |            |            |           |           |           |         |         |         |
|                  | Timing            |      | 0.1        | 0.1        | 0.1        | 0.1       | 0.1       | 0.1       | 0.1     | 0.1     | 0.1     |
|                  | Std               |      | 0.1        | 0.1        | 0.1        | 0.1       | 0.1       | 0.1       | 0.1     | 0.1     | 0.1     |
|                  | Distribution      |      | Normal     | Normal     | Normal     | Normal    | Normal    | Normal    | Normal  | Normal  | Normal  |
|                  | Routing           |      | Shortest Q | Shortest Q | Shortest Q | Circulate | Circulate | Circulate | n/a     | n/a     | n/a     |
| Servi            | ce Times          |      |            |            |            |           |           |           |         |         |         |
|                  | Hit Timing        |      | 1          | 1          | 1          | 1         | 1         | 1         | 0.3     | 0.3     | 0.3     |
|                  | Std               |      | 0.1        | 0.1        | 0.1        | 0.1       | 0.1       | 0.1       | 0.1     | 0.1     | 0.1     |
|                  | Distribution      |      | Normal     | Normal     | Normal     | Normal    | Normal    | Normal    | Normal  | Normal  | Normal  |
|                  | Miss Timing       |      | 15         | 10         | 5          | 15        | 10        | 5         | 14.3    | 9.3     | 4.3     |
|                  | Std               |      | 2.5        | 2.5        | 2.5        | 2.5       | 2.5       | 2.5       | 2.5     | 2.5     | 2.5     |
|                  | Distribution      |      | Normal     | Normal     | Normal     | Normal    | Normal    | Normal    | Normal  | Normal  | Normal  |

#### Shortest Queue Model Run

# **Sysplex Modeling:**

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses



- M15SQ 9.9
- M10SQ 3.9
- M05SQ 2.0
- Longest Queue
  - M15SQ 13
  - M10SQ 8
  - M05SQ 6
- Better than Circulate
- Long Trans Cause Backups





25

# Shortest Queue 15 Model Run

#### **Sysplex Modeling:**

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

#### PTS Model Run M15SQ 15 Queue Length 10 PTS 1 Queue Length 5 0 95 373 480 705 221 597 779 836 898 953 . Time



#### Detailed Results:

| M15SQ                 | PTS 1 | PTS 2 | PTS 3 |
|-----------------------|-------|-------|-------|
| Minimum Queue Size    | 0.0   | 0.0   | 0.0   |
| Average Queue Size    | 2.6   | 2.9   | 2.6   |
| Maximum Queue Size    | 12.0  | 13.0  | 13.0  |
| Minimum Queuing       | 0.0   | 0.0   | 0.0   |
| Average Queue Time    | 6.9   | 9.3   | 6.8   |
| Maximum Queuing       | 30.1  | 47.6  | 46.0  |
| Number Completed      | 365.0 | 312.0 | 374.0 |
| Waiting %             | 22.0  | 16.9  | 23.6  |
| Working %             | 78.0  | 83.1  | 76.4  |
| Aaverage Service Time | 2.1   | 2.7   | 2.0   |

# Shortest Queue 10 Model Run

#### **Sysplex Modeling:**

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

#### PTS Model Run M10SQ 15 Queue Length 10 PTS 1 Queue 5 Length 0 198 862 971 86 314 416 512 623 711 791

Time





#### Detailed Results:

| M10SQ                 | PTS 1 | PTS 2 | PTS 3 |
|-----------------------|-------|-------|-------|
| Minimum Queue Size    | 0.0   | 0.0   | 0.0   |
| Average Queue Size    | 0.6   | 0.9   | 0.6   |
| Maximum Queue Size    | 8.0   | 6.0   | 7.0   |
| Minimum Queuing       | 0.0   | 0.0   | 0.0   |
| Average Queue Time    | 1.9   | 2.5   | 1.8   |
| Maximum Queuing       | 19.0  | 19.8  | 19.3  |
| Number Completed      | 349.0 | 349.0 | 356.0 |
| Waiting %             | 29.9  | 29.9  | 39.3  |
| Working %             | 70.1  | 70.1  | 60.7  |
| Aaverage Service Time | 2.0   | 2.0   | 1.7   |

#### Shortest Queue 05 Model Run

#### **Sysplex Modeling:**

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

#### • Detailed Results:

| M05SQ                 | PTS 1 | PTS 2 | PTS 3 |
|-----------------------|-------|-------|-------|
| Minimum Queue Size    | 0.0   | 0.0   | 0.0   |
| Average Queue Size    | 0.2   | 0.3   | 0.2   |
| Maximum Queue Size    | 5.0   | 5.0   | 6.0   |
| Minimum Queuing       | 0.0   | 0.0   | 0.0   |
| Average Queue Time    | 0.4   | 0.8   | 0.7   |
| Maximum Queuing       | 5.6   | 14.8  | 9.8   |
| Number Completed      | 356.0 | 356.0 | 342.0 |
| Waiting %             | 55.2  | 48.5  | 53.1  |
| Working %             | 44.8  | 51.5  | 46.9  |
| Aaverage Service Time | 1.3   | 1.4   | 1.4   |







## Circulate Model Run

# **Sysplex Modeling:**

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses



- ◆ M15C 15.4
- M10C 5.3
- M05C 1.9
- Longest Queue
  - M15C 31
  - M10C 14
  - M05C 6
- Worst Response Times
- Most Variation
- Some Smarts Better Than None





585 695 782 884 992

7490 Time

85 195 288 288

29

# *Circulate 15 Model Run*

#### **Sysplex Modeling:**

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

#### Detailed Results:

| M15C                  | PTS 1 | PTS 2 | PTS 3 |
|-----------------------|-------|-------|-------|
| Minimum Queue Size    | 0.0   | 0.0   | 0.0   |
| Average Queue Size    | 3.0   | 2.5   | 8.3   |
| Maximum Queue Size    | 16.0  | 15.0  | 31.0  |
| Minimum Queuing       | 0.0   | 0.0   | 0.0   |
| Average Queue Time    | 8.5   | 7.2   | 23.8  |
| Maximum Queuing       | 43.7  | 41.3  | 84.2  |
| Number Completed      | 346.0 | 347.0 | 335.0 |
| Waiting %             | 21.9  | 29.9  | 13.7  |
| Working %             | 78.1  | 70.1  | 86.3  |
| Aaverage Service Time | 2.3   | 2.0   | 2.6   |







# *Circulate 10 Model Run*

# Sysplex Modeling:

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

#### • Detailed Results:

| M10C                  | PTS 1 | PTS 2 | PTS 3 |
|-----------------------|-------|-------|-------|
| Minimum Queue Size    | 0.0   | 0.0   | 0.0   |
| Average Queue Size    | 0.9   | 0.9   | 1.9   |
| Maximum Queue Size    | 9.0   | 9.0   | 14.0  |
| Minimum Queuing       | 0.0   | 0.0   | 0.0   |
| Average Queue Time    | 2.6   | 2.4   | 5.5   |
| Maximum Queuing       | 23.0  | 23.6  | 34.5  |
| Number Completed      | 349.0 | 352.0 | 351.0 |
| Waiting %             | 37.4  | 41.6  | 31.6  |
| Working %             | 62.6  | 58.5  | 68.4  |
| Aaverage Service Time | 1.8   | 1.7   | 1.9   |







31

# *Circulate 05 Model Run*

#### **Sysplex Modeling:**

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

#### • Detailed Results:

| M05C                  | PTS 1 | PTS 2 | PTS 3 |
|-----------------------|-------|-------|-------|
| Minimum Queue Size    | 0.0   | 0.0   | 0.0   |
| Average Queue Size    | 0.2   | 0.2   | 0.2   |
| Maximum Queue Size    | 4.0   | 4.0   | 6.0   |
| Minimum Queuing       | 0.0   | 0.0   | 0.0   |
| Average Queue Time    | 0.5   | 0.5   | 0.7   |
| Maximum Queuing       | 8.3   | 8.6   | 13.1  |
| Number Completed      | 352.0 | 352.0 | 351.0 |
| Waiting %             | 53.2  | 53.6  | 51.1  |
| Working %             | 46.8  | 46.5  | 48.9  |
| Aaverage Service Time | 1.3   | 1.3   | 1.4   |







#### Single CEC Model Run

# **Sysplex Modeling:**

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses



- ◆ M15B 2.9
- M10B 1.4
- M05B 0.6
- Longest Queue
  - M15B 22
  - M10B 16
  - M05B 8
- Lots of Variation Not Reflected in Averages
- More Hits (Short Trans) Makes the Difference







33

# Single CEC Model Run

#### **Sysplex Modeling:**

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

#### • Detailed Results:

| Single CEC            | M15B  | M10B  | M05B  |
|-----------------------|-------|-------|-------|
| Minimum Queue Size    | 0.0   | 0.0   | 0.0   |
| Average Queue Size    | 2.3   | 1.0   | 0.3   |
| Maximum Queue Size    | 22.0  | 16.0  | 8.0   |
| Minimum Queuing       | 0.0   | 0.0   | 0.0   |
| Average Queue Time    | 2.4   | 1.0   | 0.3   |
| Maximum Queuing       | 21.0  | 12.8  | 7.8   |
| Number Completed      | 974.0 | 974.0 | 974.0 |
| Waiting %             | 52.0  | 59.0  | 66.0  |
| Working %             | 48.0  | 41.0  | 34.0  |
| Aaverage Service Time | 0.5   | 0.4   | 0.3   |







# **Run Comparison**

#### **Sysplex Modeling:**

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses





Sysplex Modeling: Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

- Simple Model Can Bracket the Problem
- Relative Differences vs Absolute Values
- Transaction Type More Important
- CPU Differences Less Important
  - But Difference Still Workload Dependent
- Routing Technique Will Make a Difference
  - Shortest Queue Better than Circulate
  - Will Content Routing Unbalance Queues?
    - Queues Continue to Grow
    - But Fewer Long Transactions



Sysplex Modeling: Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

#### • More to Understand About the Workload

- Data Access Patterns
- Hit Ratios
- Locality of Reference
- Arrival Patterns and Distributions

#### Key Questions:

- Is the Inter-arrival Time for Long Transactions Large Enough to Allow the Ones in the Queues to be Processed Before a New One Arrives?
  - Average vs True Distribution
- Is the Number of Long Transactions to be Processed Concurrently Greater Than the Total Number of Servers?
  - If Yes Timing Will Create Backups



Sysplex Modeling: Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

- Many Problems Moving Applications to Multiple Distributed Processors
- Industry Direction Increasing Problems
- Few Existing Tools
- Modeling Provides Information for Design and Implementation Decisions
  - How Much Difference Does a Choice Make?
- Assumptions Important
- Models Must Match Reality

# Next Steps For the Model

#### **Sysplex Modeling:**

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

#### Increase Parallelism

 Add Servers to PTS's and CEC's to Represent the Maximum Number of CPU's or Tasks

#### Data Collection Techniques

- Application Instrumentation
- Monitors?
- Other?

#### Transaction Content Routing

Data Collection an Issue

#### Buffer Access Emulation

- Data Collection an Issue
- Buffer Management Technique (LRU or Other?)
- Memory Sizing in the Servers (PTS's and CEC's)

#### **Sysplex Modeling:**

Modeling Distributed Transaction Response Times As Impacted by In-Storage Buffer Accesses

# **Questions**

?