
1997 Summer Computer Simulation Conference 1 July 13-17, 1997; Arlington, Virginia

SIMALYTIC MODELING: A HYBRID TECHNIQUE
FOR CLIENT/SERVER CAPACITY PLANNING

Tim R. Norton, Doctoral Candidate
Department of Computer Science

Colorado Technical University
Colorado Springs, CO 80907

tim.norton@simalytic.com

Keywords: Simalytic, hybrid modeling, queuing theory, simulation, capacity planning

Abstract
The Simalytic™ Modeling Technique* (from Simulation/Analytic) is a hybrid technique that addresses modeling and predicting the
capacity requirements of computer systems in complex enterprise-wide client/server multiple-platform applications. This technique
uses a general purpose simulation tool as an underlying framework and an analytic tool to represent application response times at indi-
vidual nodes. The bridge between the two techniques is a transform function that will adjust the service time for a given server depend-
ing on the load at that server. It combines both platform-centric tools (limited features but detailed platform information) and general
purpose tools (rich low level features) to address today’s large heterogeneous enterprises. This methodology takes advantage of features
in the different techniques (simulation vs. analytic queuing theory) as well as features in the different tools (platform-centric vs. general
purpose) by defining the interface between the simulation framework and queuing theory node models. The benefits of using a hybrid
technique are discussed and results are presented to show the validity of the Simalytic technique.

* SimalyticTM, Simalytic ModelingTM, Simalytic Modeling Technique TM and Simalytic Enterprise Modeling TM are trademarked by Tim R. Norton
All other trademarked names and terms are the property of their respective owners.
 1997 Tim R. Norton, Permission is granted to publish this article in the 1997 Summer Computer Simulation Conference Procee dings.

1. INTRODUCTION AND GENERAL BACKGROUND
The world of computing is changing at a very rapid pace.

Systems that once would have been a single computer are now
multi-platform. What were once batch applications are now on-
line transaction processing client/server systems with GUI
(graphical user interface) front-ends on PWS’s (programmable
work-stations) attached to departmental servers and mainframe
repositories. These new application designs utilize the features
and services of different types of computers (mainframe,
mid-range, desktop) running different operating systems (MVS,
Unix, OS/2, Windows, etc.) connected by a variety of communi-
cation network techniques (RPC, DCE, NFS, FTP, SNA, APPN,
etc.) (Hatheson 1995; Wilson 1994).

As applications move into this new client/server world,
how do we select the right systems at each level and, once se-
lected, how do we insure those systems are the right size? If any
one of them is too small the whole application will fail. If any
are too big, the cost of running the application may exceed the
revenue it generates. Neither is a very attractive situation.

The objective of capacity planning is to find the success-
ful middle ground. Today, planning the capacity of large com-
puter installations with multiple systems requires an understand-
ing of not only the operating systems, the platforms, the clients,
the servers, the networks, the transaction systems, etc., but more
importantly, the applications and the relationships between them.
Once those relationships are defined and understood, the appli-
cation’s performance can be assessed against the business objec-
tives and goals. Projected business volumes are then modeled to

predict the capacity required to meet those goals at future vol-
umes.

There are many modeling tools and techniques that ad-
dress both performance and capacity for each of the systems in
today’s multi-platform environment (Pooley 1995; Smith 1995).
The Simalytic™ Modeling technique provides a bridge across
these existing tools to allow the construction of an enterprise
level application model that takes advantage of models and tools
already in place for planning the capacity of each system. More
detailed background information, including examples and busi-
ness motivations, is provided in (Norton 1996).
1.1 Capacity Planning

The capacity of a system can be measured many different
ways, depending on the business the system supports. Generally,
the way a system is measured centers around the performance of
one or more of the applications. The system “has enough capac-
ity” if everything is getting done when it is needed. Capacity
planning is making decisions about the resource requirements of
a given computer system based on the forecasting of future ap-
plication performance using the goals and expectations of the
business. What do we have to buy and when do we have to buy
it to make sure that the applications that run the business perform
at the level required to insure the business succeeds?
1.2 Transaction Based Applications

Although there are still many important batch applica-
tions, this discussion will center around transaction based appli-
cations. Transaction processing systems, often referred to as
OLTP (On-Line Transaction Processing), allow the end-user to
enter a relative small independent unit of work into the system

1997 Summer Computer Simulation Conference 2 July 13-17, 1997; Arlington, Virginia

and receive some information as a response in near real-time.
Transactions include entering an order at a terminal (business
transaction), an SQL command (database transaction), some
keystrokes followed by a carriage-return (interactive transac-
tion)whatever is meaningful from the end-user’s point-of-
view. Transactions can be counted to establish load (e.g. arrival
rate) and measured to establish performance (e.g. response
time). The responsiveness of the transactions associated with an
application determine if that application meets the needs of the
business. Projected business volumes are then modeled to pre-
dict the capacity required to meet the business goals at future
volumes.
1.2.1 Client/Server Environment

Figure 1 A Sample "Client/Server" System shows a hy-
pothetical client/server environment to illustrate the problem of
modeling application performance. Which techniques and prod-
ucts are chosen doesn’t matter, but what is important is under-
standing that any of the client applications on any of the PWS’s
can, and will, send transactions to several of the legacy applica-
tions to provide the end-user a screen of complete and interre-
lated information. For example, the Order Entry user may type
in the name of an existing customer and get not only their ad-
dress but any pending or past orders and the status of their ac-
count. This may provide better service, but it also causes trans-
actions to be sent to each of the other systems.

Capacity planning in a client/server environment is much
harder than in a single computer environment. In the example
above, if the Shipping workload outgrows the Unix system, it
can impact the responsiveness of the Order Entry transactions.
In addition, growth in the Order Entry workload will now impact
the Unix system, but only if the orders are from existing custom-
ers.

Modeling in this environment is a challenge because each
of the systems requires a different knowledge base and expertise
(Gunther 1995; Hatheson 1995). None of the systems can be
modeled independently because the transaction arrival rate for
one system may be dependent on the response times of the oth-
ers. The client software on the PWS may issue transactions to
several servers (send everything about customer #123) or it may
have to wait for one response before sending the next (what is

Jones’ customer number; then send everything about that num-
ber). While the former situation will cause the momentary peaks
to synchronize on all of the servers; the latter will slow every-
thing down as one of the servers becomes overloaded and its
response times increase. “While it is important to be able to
model specific UNIX or NT hardware, the problem we face is
modeling the environment that has a diverse collection of hard-
ware, operating system, database management system, and net-
work hardware.” (Domanski 1995).

Figure 2 An Enterprise Model shows a very simplistic
model for each of the major areas of a client/server application

and, although it only shows a single server, the interdependence
is evident. Reduced responsiveness of one part of the model
(server, client or network) will have an impact on the other two.
1.3 Modeling Capacity Projections

The use of models to assess and predict the performance
of computer systems is not new. Capacity planning has always
relied to some extent on modeling because of the need to predict
future requirements. A capacity planner can analyze the work-
loads and make predictions based on experience or simple
trending. Models can be constructed to understand how an ap-
plication functions without any intention to predict future per-
formance. The area of interest here is the intersection of the two
fields; models used to predict capacity requirements based on
performance expectations.
1.3.1 Approaches to Capacity Planning Modeling

The approaches to capacity planning range from the ap-
plication of rules-of-thumb to full scale benchmarks of the appli-
cation or system (Brunetto 1984; Gilmore 1980; Hanna 1988;
Mills 1991). Figure 3 Capacity Planning Approaches shows
the relationship between these approaches. (This figure shows
only the relative relationships.) Business Analysis (Rules-Of-
Thumb) and Trends (Linear Projections) rely on historical
analysis and the assumption that future performances is a direct
extension of past performance. Application benchmarks can be
the most accurate because they actually implement the applica-
tions, but at the greatest cost. Modeling is the middle ground

MVS
DOCUMENTS

MASTER
DATA BASES

VMS

ORDERS

CUST
SERV

SHIPPING
RECEIVING

UNIX

NET
WORK

LAN

SHIPPING
DOCUMENTS

GATE
WAY

Figure 1 A Sample "Client/Server" System

Server

Clients

Network

Reproduced with permission from Dr. Connie Smith,
Performance Engineering Services.

Server
Q CPU

Disk1

Disk2

Network

CPU DiskClient
Q

Delay

User
Delay

Figure 2 An Enterprise Model

1997 Summer Computer Simulation Conference 3 July 13-17, 1997; Arlington, Virginia

between the high cost and effort of benchmarks and the low pre-
diction ability of trends.
1.3.2 Response Time Modeling

The key to the capacity planning methodology discussed
so far is the ability to predict the performance of a future work-
load, given a desired system configuration. As applications
move towards being transaction based, the definition of applica-
tion performance becomes centered around transaction response
time and modeling the response time becomes crucial to the
ability to predict the future performance of that application.

There are two basic modeling techniques used for com-
puter performance modeling: simulation and analytic queuing
theory (Kobayashi 1981; Menascé, Almeida, and Dowdy 1994).
Either of these techniques will build a model that represents the
major components of the computer system to be modeled. A
third technique, hybrid modeling, is the combination of both
simulation and analytic techniques in a single model (Kobayashi
1981).
1.4 Modeling Tools

In addition to the choice between analytic and simulation
tools, the capacity planner or performance analyst has the choice
between platform-centric and general purpose tools. The basic
difference between these two groups is the problem set the tools
were designed to address.
1.4.1 Platform-Centric

Platform-centric means the tool contains detailed infor-
mation about the platform, but does not allow more than one
platform to be modeled at a time. For example, they would in-
clude information about the number and type of processors for
each system in the model. Platform-centric models are generally
easier to build because they are made of “building blocks” al-
ready defined to the tools, and the relationships between them are
fully understood by the model. However, these tools cannot be
used to model an environment not built into the tool. Although
many platform-centric tools allow the user to define new servers
with new performance characteristics, they generally do not
provide large libraries of device and system definitions dramati-
cally different from the supported platform. Platform-centric
tools are generally implemented using analytic, or queuing the-
ory, modeling techniques and process performance and configu-
ration data collected from existing running systems.

1.4.2 General Purpose
General purpose means the tool contains the features to

allow the user to model almost anything, but with little or no
“built-in” understanding of any given computer platform. These
tools are used to model more than just the hardware, including
application design, traffic flow and communications protocols.
System components are modeled using either a sub-model to
implement the underlying architecture or a pre-determined delay
value. Although many general purpose tools provide libraries of
sub-models for a variety of systems and devices, they generally
do not provide the required level of granularity, being either too
general or too detailed for the situation. Building the relation-
ships between the submodels is part of the overall model con-
struction and may require an in-depth understanding of all of the
submodels used, some of which are provided by the tool vendor
in executable–only formats. General purpose tools are generally
implemented using simulation modeling techniques.
2. SIMALYTIC MODELING METHODOLOGY

 Simalytic™ Modeling (from Simulation/Analytic) is a
hybrid modeling technique that uses a general purpose simulation
modeling tool as a underlying framework and the results of an
analytic modeling tool to represent the individual nodes or sys-
tems. The problem addressed by Simalytic Modeling is at the
intersection of several areas: capacity planning, modeling (both
simulation and queuing theory), client/server transaction process-
ing systems, and commercial tools (both general purpose and
platform-centric). The goal of a Simalytic Model is to predict
the capacity requirements of an application executing on hetero-
geneous computer systems by creating an enterprise level appli-
cation model.

There are two key differences between the existing
modeling tools and the Simalytic Modeling methodology. The
first is the ability to use the results from not only a different tool,
but a different modeling technique altogether, as a submodel
within an enterprise model. The second is the ability to use the
results from tools or techniques already being used to model
individual nodes in the system. These differences reduce the
time and effort to build an enterprise level model by using the
results from commercially available platform-centric tools or
existing detailed application models.
2.1 Methodology

Simalytic Modeling brings together existing performance
models and application information. Queuing theory models rely
on averages, such as average response time, average service time
and average arrival rate. These models are generally more effi-
cient to execute than simulation models, but, because of the use
of averages, their accuracy generally decreases as the data col-
lection interval increases due to variability in the data. Simalytic
Modeling allows the application to be modeled over longer peri-
ods of time to understand the application dynamics without in-
creasing the error due to greater variation in the data items used
for the above averages.

When using commercial queuing theory tools, it is gen-
erally understood that shorter intervals (the time period for which
measurement data was collected to use in building a model)
usually produce better model results because there is less varia-
tion in the measurement data. Trace-driven models are the most

Business Analysis (Rules-of-Thumb)

Benchmarks

Simulation Models

Queuing Models

Trends (Linear Projections)

Complexity, Cost, Effort

A
cc

u
ra

cy

Figure 3 Capacity Planning Approaches

1997 Summer Computer Simulation Conference 4 July 13-17, 1997; Arlington, Virginia

common in capacity planning and performance modeling because
of the focus on existing systems. As an additional benefit, the
trace data provides the transaction arrival distributions, which is
often a major issue in model construction.

Simalytic Modeling is based on a hybrid technique that
allows the models to use the best features of each tool. Sub-
models allow some part of the model to be replaced with a dif-
ferent model, using a different technique, as long as it provides
appropriate functionality and results; similar to the FESC (flow-
equivalent service center) decomposition technique discussed in
(Menascé, Almeida, and Dowdy 1994). A valid model (proven
to produce accurate predictions) must exist for each system or
node to be included in the application enterprise model. The
application details must be understood, and consistently defined,
at the enterprise level.
2.1.1 Methodology Process

An enterprise level model is constructed by starting with
a very high level simulation model of the application, where each
system is a single server. Then, instead of using a pre-defined
service time, each server uses a transform function that maps the
transaction arrival rates to service times. In the enterprise model,
the service time and the response time for each server will be the
same because the queue time is accounted for in the response
time data for the server. Each node in the simulation model must
allow enough parallelism to avoid queuing to enter the node.

Continuing with the example from section 1.2.1, some
number of the Order Entry transactions would be routed to the
Shipping server. Assume it has been determined that Shipping
can provide a response time of one second when arrivals are less
than three per minute and a response time of two seconds when
arrivals are more than three per minute. When the Order Entry
transaction rate increases such that more than three per minute
are sent to Shipping, the response time will jump from one to
two seconds. This is an overly simple example, but it illustrates
the point. The increased service time at Shipping will cause the
overall response time for those transactions to increase, which
will be seen as a longer average response time or reduced
through-put for the application.

Figure 4 Simple Enterprise Model
shows a diagram of this model. The response
time is measured from Arrivals to Departures,
either through the Shipping node or around it.
This example shows how the Simalytic Model
connects what is happening in the application
on the different servers. If the Order Entry
system is modeled by itself, the workload rep-
resenting the long (Shipping) transactions
would not reflect the increased response time
due to the load at Shipping. Because of the
additional application information in the Sima-
lytic Model, it could adjust the service time in
the Shipping server based on the current load,
which will then be reflected in the Order Entry
transactions that visit the Shipping server.

The next step is to analyze the model
using the business objectives. Assume that the
manager of the Order Entry department has
requested a model to determine when the Order

Entry system will need to be upgraded in order to maintain the
required response time of less than 1.7 seconds. The arrival rate
is assumed to have a constant increase over the next 18 months
(the scope of the analysis) and the percent of the Order Entry
transactions that also query the Shipping system is assumed to be
30%. The response time goal for the Shipping system is less than
10 seconds (because these transactions generally do not involve a
waiting customer). The objectives of the analysis are to answer
two questions: “When does the Order Entry system fail to meet
the business response time goal?” and “What will fix the prob-
lem?”.

Figure 5 Model Results Analysis shows the hypothetical
results of this example model. When each of the systems are
analyzed independently, neither of the response times ever ap-
proach the business goal of 10 seconds for the Shipping transac-
tions and 1.7 seconds for the Order Entry transactions. However,
when the relationship between Shipping and Order Entry is
added to the chart in the form of results from a Simalytic Model,
the revised Order Entry response times show that system will
need to be upgraded by year end, well within the scope of the
analysis. In addition, the ‘fix’ to the problem is to upgrade the
Shipping system, which never exceeds its response time goal.
The Simalytic Model allows the analyst to see the impact of
relationships that, although known, may not be fully appreciated.

Arrivals

Departures

Order Entry

1 sec

Shipping

1 sec if < 3 / min
2 sec if > 3 / min

Figure 4 Simple Enterprise Model

Model Results Analysis

0.0

0.5

1.0

1.5

2.0

2.5

1/
1/

96

1/
29

/9
6

2/
26

/9
6

3/
25

/9
6

4/
22

/9
6

5/
20

/9
6

6/
17

/9
6

7/
15

/9
6

8/
12

/9
6

9/
9/

96

10
/7

/9
6

11
/4

/9
6

12
/2

/9
6

12
/3

0/
96

1/
27

/9
7

2/
24

/9
7

3/
24

/9
7

4/
21

/9
7

5/
19

/9
7

6/
16

/9
7

7/
14

/9
7

Date

R
es

p
o

n
se

 T
im

e

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

A
rr

iv
al

 R
at

e
(T

ra
n

sa
ct

io
n

s
p

er
 S

ec
o

n
d

)

Order Entry

Shipping

OE Response Time
Goal

Shipping Response
Time Change

OE Simalytic

Arrival Rate

Shipping response
time change at 3
arrivals/minute

Order Entry
response time
average exceeds
goal

Figure 5 Model Results Analysis

1997 Summer Computer Simulation Conference 5 July 13-17, 1997; Arlington, Virginia

2.2 Methodology Implementation
The formulae presented in this section are overly simpli-

fied to illustrate the relationships between them. It is assumed
that the reader is familiar with the mathematics in these areas
and, once the concepts are understood, will extend those relation-
ships using more complex formulae appropriate to their problem
domain.

The queuing theory mathematical formula for the average
response time (T) of transactions in a simple single-server ana-
lytic model is shown in Equation 1 Analytic Response Time
Formula from (Menascé, Almeida, and Dowdy 1994, p. 108)
where S is the average time
spent at the server, and λ is
the average transaction
arrival rate. A detailed
description of this formula
and its application can also
be found in (Buzen 1984).

The mathematical formula to estimate the average re-
sponse time (T) of transactions in a simple single-server simula-
tion model is shown in Equation 2 Simulation Response Time
Formula from (Menascé,
Almeida, and Dowdy 1994,
p. 108) where Ti is the re-
sponse time of the ith trans-
action and nt is the total
number of transactions that
visited the server during the
simulation.

The Simalytic methodology combines these two mathe-
matical formulae into the Simalytic Modeling formula shown in
Equation 3 Simalytic Response Time Formula. As the frame-
work for a Simalytic model is a simulation model, we start with
the simulation response time formula shown in Equation 2. The
server time from each iteration (Ti) is replaced with function
f (λi), where i is the iteration index and λ
is the arrival rate calculated from the
interarrival time.

The function f represents what-
ever is required to return the correct re-
sponse time for each given arrival rate
derived from proprietary algorithms im-
plemented in a commercial tool. The
simulation model invokes a submodel
that implements the Simalytic function
which returns the response time for the
given λ. Details of the foundation of the
methodology are presented in other pub-
lished works (Norton 1996).

Even assuming a best case situation where the interarrival
times of the actual transactions are uniform (no variation), there
would still be variation in the response times due to variation in
the workload (different transactions, different calculations, dif-
ferent logical path, etc.) and due to variations in the device serv-
ice times (CPU cache and pipeline, disk cache and rotation, in-
terference form higher priority workloads, etc.). When using any
queuing theory model, two assumptions must be accepted. First,
that the average of each of the parameters over the data collec-
tion interval represents the actual system. Second, that the pre-
dicted results represent an acceptable average response time.
As with the FESC (flow-equivalent service center) decomposi-
tion technique (Menascé, Almeida, and Dowdy 1994), the system
to be modeled is divided into parts that can each be analyzed and
solved independently. Each part is then replaced with a single
server that is representative of the flow through that part of the
system. The FESC must be solved independently and must
maintain the ‘flow’ of the overall model (i.e. the behavior of
each FESC must be almost indistinguishable from the subsystem
it replaces). The subsystem model is solved to obtain the subsys-
tem throughputs as a function of multiprogramming level (for
closed models) or the subsystem response times as a function of
arrival rate (for open models). The FESC is then substituted for
the subsystem in the overall model using the function to describe
the subsystem’s behavior. (Menascé, Almeida, and Dowdy
1994, p. 236) cites (Cortois 1975) that little error is introduced if
the transition rate within the submodel is much greater than the
interaction rate between the submodel and the overall model
(which will necessarily be the case when the submodel represents
an entire independent system or node).
2.3 Preliminary Results

The preliminary results were produced using MathCAD
(MathSoft 1995) to implement the three formulae. Both the
service times and the interarrival times were exponentially dis-
tributed around the average shown because this matches the
M/M/1 queuing model, used in most commercial platform-

Equation 1 Analytic Response
Time Formula

T
S

S
=

−1 λ

Equation 2 Simulation Re-
sponse Time Formula

T
T

n
ii

n

t

t

= =∑ 1

Equation 3 Simalytic Response
Time Formula

T
f

n
ii

n

t

t

= =∑ ()λ
1

Relative Response Times of Three and Four
 Servers in Series

0.000

2.000

4.000

6.000

8.000

10.000

12.000

0.
01

0.
03

0.
05

0.
07

0.
09

0.
11

0.
13

0.
15

0.
17

0.
19

0.
21

0.
23

0.
25

0.
27

0.
29

0.
31

0.
33

0.
35

0.
37

0.
39

0.
41

0.
43

0.
45

0.
47

0.
49

Arrival Rate

R
es

p
o

n
se

 T
im

es

Series of 0.1, 0.5 and
1.0 Simulation

Series of 0.1, 0.5 and
1.0 Simalytic

Series of 0.1, 0.5 and
1.0 Queuing Theory

Series of 0.5, 1.0 and
1.5 Simulation

Series of 0.5, 1.0 and
1.5 Simalytic

Series of 0.5, 1.0 and
1.5 Queuing Theory

Series of 0.1, 0.5 and
1.5 Simulation

Series of 0.1, 0.5 and
1.5 Simalytic

Series of 0.1, 0.5 and
1.5 Queuing Theory

Series of 0.1, 0.5, 1.0
and 1.5 Simulation

Series of 0.1, 0.5, 1.0
and 1.5 Simalytic

Series of 0.1, 0.5, 1.0
and 1.5 Queuing
Theory

Figure 6 Response Time Comparison for Three and Four Servers

1997 Summer Computer Simulation Conference 6 July 13-17, 1997; Arlington, Virginia

centric tools. Graphs were produced for single server scenarios
with service times of 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5,
5.0, 25, 50, 75 and 99 seconds, all showing a high degree of
similarity for the three formulae. Graphs showing similar results
were also produced for two, three and four server scenarios at a
variety of service times using both series routing and probability
routing. Figure 6 Response Time Comparison for Three and
Four Servers is one of these graphs and shows the correlation
between the three techniques for three and four servers in series
at service times from 0.1 seconds to 1.5 seconds.

These results are acceptable within the capacity planning
domain even with the simplistic Simalytic function that was
used. The limited facilities available within MathCAD only
allowed the function to use the interarrival times to calculate the
response time. More sophisticated commercial simulation tools
will allow the function to use other available information, such
as the current queue length and server utilization.
3. CONCLUSION

Capacity planning for single-platform computer systems
has developed over the years into a well disciplined field, but
predicting the resource requirements in a client/server environ-
ment is still a challenge. Applications designed to exploit a cli-
ent/server architecture greatly increase the complexity of both
the computer system configurations and the applications them-
selves. Predicting the responsiveness of complex applications, at
a reasonable effort and cost, requires a complex modeling meth-
odology. Modeling an application at the enterprise level requires
an understanding of the applications and measurements of the
transaction response times. Different modeling techniques
(simulation, analytic queuing theory or hybrid) and different
modeling tools (platform-centric or general purpose) can be used
to predict transaction response times for individual systems or
nodes.

Simalytic Modeling can be used to take advantage of ex-
isting application and system models to reduce the time and ef-
fort required to produce detailed enterprise level application
models. Using this technique will both improve the understand-
ing of the application and identify which systems require more
detailed analysis to determine if they will continue to meet the
business needs without additional equipment. The implementa-
tion of the technique, using any of the many existing tools, not
only protects the investment an organization has made in tool
acquisition and training, but it also reduces the time and effort to
produce a model that will predict the impact of business growth
on the entire enterprise. The preliminary results show that a
transform function can be implemented such that an entire com-
puter system can be represented as a single node in a simulation
model. Although better results are expected with future imple-
mentations, these current results, using a simplistic Simalytic
function, are within the generally accepted error range for com-
puter system capacity planning models.
3.1.1 Future Research

The author is currently implementing Simalytic Modeling
using a number of commercial simulation modeling tools for the
framework. This methodology will allow someone interested in
predicting the performance of an application based on the antici-
pated growth in business transactions to construct a simulation

model of the application using the results of commercial plat-
form-centric tools to express the service times for each node.
4. ACKNOWLEDGMENTS

The author would like to thank Dr. Jeff Buzen and Mr.
Rick Lebsack for their interest and in-depth critiques of early
versions of this research. A special thanks is also expressed to
Dr. John Zingg, Dissertation Committee Chair, for his insight
and assistance.

AUTHOR BIOGRAPHY

Tim R. Norton is a Doctor of Computer Science
(DCS) Candidate at Colorado Technical University. He holds an
MMS in Computer Science from the University of Texas at
Dallas. He is employed as a Senior Staff Member in Technology
Planning at MCI Telecommunications. He has 20+ years com-
puter systems experience, including applications design, support,
systems programming, capacity planning and modeling. His
current area of research is hybrid modeling of client/server com-
puter systems.

BIBLIOGRAPHY
Brunetto, Anthony F. 1984. Benchmarking Decisions - A Management

Tutorial. In Proceedings. Computer Measurement Group,: 755-
761: CMG, Inc.

Buzen, Jeffrey P. 1984. A Simple Model of Transaction Processing. In
Proceedings. Computer Measurement Group,: 835-839: CMG,
Inc.

Cortois, P. 1975. Decomposability, instabilities and saturation in multipro-
gramming systems. Communications of the ACM 18 (7).

Domanski, Bernard. 1995. Capacity Management for Client-Server Archi-
tectures. Enterprise Systems Journal 10 (11): p78(6).

Gilmore, Martha R. 1980. Capacity Planning Methodologies. In Proceed-
ings. Computer Measurement Group: CMG, Inc.

Gunther, Neil J. 1995. Performance Analysis and Capacity Planning for
Datacenter Parallelism. In Proceedings. Computer Measurement
Group: CMG, Inc.

Hanna, Carolyn. 1988. A Production Control Model Of On-Line Systems
A Capacity Planning Overview. In Proceedings. Computer
Measurement Group,: 592-598: CMG, Inc.

Hatheson, Amanda. 1995. Two Unix Client/Server Capacity Planning Case
Studies. In British Proceedings. Computer Measurement Group:
CMG, Inc.

Kobayashi, Hisashi. 1981. Modeling and Analysis: An Introduction to
System Performance Evaluation Methodology. The Systems
Programming Series. Reading, MA: Addison-Wesley Publish-
ing Company.

MathSoft. Mathcad 6.0. MathSoft Inc., Cambridge MA.
Menascé, D., V. Almeida, and L. Dowdy. 1994. Capacity Planning and

Performance Modeling: from mainframes to client-server sys-
tems. Englewood Cliffs, New Jersey: Prentice Hall.

Mills, Terry L. 1991. Capacity Planning For Managers: an Implementation
Architecture. In Transactions. Computer Measurement Group:
CMG, Inc.

Norton, Tim R. 1996. Simalytic Enterprise Modeling: The Best of Both
Worlds. In Proceedings. Computer Measurement Group,: 1-12.
San Diego, CA: CMG, Inc.

Pooley, Rob. 1995. Performance Analysis Tools in Europe. Information-
stechnik und Technische Informatik 37 : 10-16.

Smith, Connie U. 1995. The Evolution of Performance Analysis Tools.
Informationstechnik und Technische Informatik 37 : 17-20.

Wilson, Gregory L. 1994. Capacity planning in a high-growth organization.
In Proceedings. Computer Measurement Group. Orlando, FL:
CMG, Inc.

